リチウムイオン電池はまだまだ進化する

EV(電気自動車)用バッテリーとしては現在リチウムイオン電池が使われているがこの電池はまだ性能的に不十分でまた液体の有機物を電解質としているため、液漏れ、燃焼等の危険性を含んでいる。この欠点を改良する方法として各社で固体の電解質を用いた全固体蓄電池の開発が進んでいる。
トヨタの予定としては2020年代前半に実用電池を開発し、2030年頃に量産しEVへの搭載が始まるとしている。(これについては前回のブロクご参照)しかしながら固体電池にも急速充電の問題(内部に結晶ができてショートする)や組立時の問題(電解質に硫黄が含まれているため空気に触れるとガスが発生する)の問題があり量産の見通しは立っていないため、一気に現行リチウムイオン電池に取って代わることにはならないと考えられている。

その間、従来のリチウムイオン電池もいろいろ性能向上が図られており、固体電池が完成しても簡単には置き換わらないと予想される。

(図は最後のサイト内より)

現在行われているリチウムイオン電池の改良の一部は以下の通り。

1.有機液体電解質の改良
有機電解液は主にリチウム塩(リチウムイオン)とこれを溶かす溶媒からなる。
一般に非常に多くのリチウム塩と溶媒があるが、以下に一例を示す。
・リチウム塩:LiPF6(六フッ化リン酸リチウム)
・溶媒:EC(炭酸エチレン)、EMC(炭酸エチルメチル)など

1)横浜国立大の渡辺教授はこれまでに較べてリチウムイオン濃度を3倍にした電解質を開発した。
溶媒には「グライム*」と呼ぶ有機溶媒を使用した。この溶媒はリチウムイオンを囲む性質があり、これを混ぜる割合を工夫することでグライムのほぼ全ての分子がリチウムイオンに 結合する条件を見つけた。これによりこれまでリチウムイオンに結合していなかった自 由な分子が充放電の繰り返しで電子などと反応し電解液や電極の劣化する原因にな っていた。(*1,2‐ジメトキシエタン、ジメチルセロソルブ

2) 東京大学の山田敦夫教授らは2014年、濃厚電解質を使うことにより電池の充電時間を3分の1にすることに成功した。また2107年にはリン酸トリメチルと呼ぶ燃えにくい有機溶媒を活用し、火を近づけても引火せず、200℃まで加熱すると火を消す蒸気が発生するという消火剤としても働く濃厚電解質を開発した。

2.電極の改良
1)正極材の改良 
正極材には、①電圧が高い、②充放電効率が高い、③電極密度が高いことなどの物性が求されるが、これらの性能をバランスよく満たす素材として、これまで民生用途では、コバルト酸リチウム(LiCoO2: LCO)が主に採用されていた。
しかし、コバルト材料は資源的な制約が多く、価格面も不安定かつ高騰するリ スクが高いため、代替材料の検討が進められている。

車載 リチウムイオンバッテリー用正極材としては、コバルト酸リチウム(LCO)以外にも3 元系(LiNiMnCoO2:NMC)、マンガン系(LiMn2O4 :LMO)、ニッケル系(LiNiCoAIO2:NCA)、鉄系(LiFePO4:LFP)など複数の材料系が実用化されていると共に、現在も改善・改良が進められている。
また、この他にも、(有機)硫黄系、固溶体系、ケイ酸塩系が次世代材料候補として注目されている。
このような状況の中で、光学ガラス大手のオハラは独自に開発したLICGCと呼ぶガラスの材料を正極に混ぜて使い試作した電池では、出力や容量の向上、充電時間の短縮、零下20℃での充電での容量の増大を確認した。
また岡山大の寺西助教はリチウムイオンを引きつける性質を持つ金属酸化物に注目し、チタンやバリウムを含む物質を粒子にして正極の表面に付け試作した電池では通情の5倍の速さで充電することができた。

以上の様に、現行液体電解質リチウムイオン電池の改良で、充電が速く、容量が大きい等電池性能が高まればまだまだ次世代電池に取って変わられることはなさそうだが、はたしてどうか。

2)負極材の改良
現在リチウムイオン電池の負極材は黒鉛が主に用いられている。
さらに高容量の負極材として理論的にはシリコン系合金が黒鉛に較べて10倍以上の容量(リチウムイオンを保持することが出来る)を持つと見込まれているため、各社が研究開発されている。
しかし充放電時の体積変化が400%にもなり、電極の構造破壊を引き起こしやすく、充放電サイクル寿命が短くなるという欠点があった。
電池メーカーは各社この問題の克服に苦心しているらしい。

最近のニュースでは
1)大阪のベンチャー企業アタッカート(参考1)が、リン酸やケイ酸の化合物を使うことで剥がれを防止する接着剤を開発し、充放電の繰り返しでも剥がれをなくすことに成功し、電極単体の性能は炭素材料の約10倍に向上し、電池としての容量が1.5倍になったとしている。
今後他社も技術開発が進めば、負極はシリコン系が主流となりそうだ
参考1)ケイ酸系無機バインダーを用いたSi負極の電極特性

2)東芝は負極の材料にチタンとニオブの酸化物を使い微細な結晶が揃うように合成したところリチウムイオンが入り込み易くなり容量が高まった。其の結果従来の5倍の電流で充電が可能となり、6分間で容量の90%まで充電出来るようになった。従来は80%の充電に30分間かかっていた。
また試作電池による充放電の繰り返し実験では5000回でも性能低下はなかった。
マイナス10℃でも急速充電が出来た。炭素の負極に多くの電流で充電すると析出して性能が落ちたり、劣化が早まったりしていたがチタン・ニオブ酸化物はこうした問題が置きないという。今回320km走行の見通しが得られたが、今後6分間の充電で400kmの走行出来る電池の開発を目指すとしている。

今後車載用をメインとして現行リチウムイオンの性能向上と全固体リチウム電池及びポストリチウムイオン電池との開発競争から目が離せない。

<参考サイト>
リチウムイオン2次電池用電極材料

リチウムイオン電池における吉野彰博士の業績

 

 

 

 

 

電気自動車(EV)用「全固体電池」が進化中

ガソリン車に変わる次世代のエコカーとして10年程前まではFCV(燃料電池車)が本命視され、水素供給基地等のインフラが整備されるまでの繋ぎとして、ハイブリッド車(HV)が位置するだろうと考えられていた時期があった。
電気自動車(EV)は電池が高価でその性能が低く、航続距離がガソリン車と太刀打ち出来なかったためだ。

しかし電池(リチウムイオン電池)の性能が上がり、環境対策として欧米の政策や大消費国中国の国策等の影響から、近年世界の潮流は圧倒的に電気自動車(EV)が主流になって来た。
それでこれまでHV、PHV、EVと距離を置いていた(かのように見えた)トヨタも大勢力をつぎ込みEVの開発に乗り出した。
そして車載用電池としてリチウムイオン電池に換わる全固体型電池が本命視している。

現在エコカーと呼ばれているハイブリッド車(HV)、プラグインHV車(PHV)、そして電気自動車(EV)はいずれもリチウムイオン電池を使用している。

そのリチウムイオン電池はリチウムイオンの通り道として現在は有機液体電解質が使われており、電池性能として航続距離が短い、充電時間が長い、そして液漏れや発火等の安全性の問題があるとされている。

特に安全性の問題に関しては燃えない物質でできないか、液漏れしない固体できないかと20年以上前から考えられていたのだが、リチウムイオンがスムーズに流れる(イオン伝導率が高い)固体電解質の開発が成功しなかった。

◯固体電解質の開発
2011年トヨタと東工大の菅野了次教授(参考2-1)が共同で従来の液体電解質よりリチウムイオンを通し易い新しい固体電解質を開発した。リチウムイオンの通り易さを示すイオン伝導率の数値で従来の電解液を超えた。
更に2016年には塩素イオンを加えることによりイオン伝導率が従来の液体の電解液に較べて2倍、出力は3倍以上となった。
イオンが動きやすくなると電池の出力が高まり、EVでの発進や加速などが向上することが期待される。
これで全固体型蓄電池(参考2-2)の可能性が一気に高まった。
充放電を1000回繰り返しても容量は殆ど落ちなかった。
急速充電の可能性も期待される

◯負極材料の開発
物質・材料研究機構の高田副拠点長は従来一般的に使われてきた炭素をシリコンに置き換えた新しい負極を開発した。
この負極は容量が既存のリチウムイオン電池の約10倍となり電池全体の容量は1.5倍に増大した。
但しシリコンは充電する時に体積が4倍に膨らむためこれを抑制した上での産化技術が検討されている。

◯正極材料の開発
大阪府立大学の辰巳教授らは、正極材料に硫化リチウムを混ぜた物を使用し、リチウムイオンを動きやすくした。結果正極の容量も2倍超となった。この試作電池はでは2000回の充放電の繰り返しにも劣化しなかった。

◯更なる耐久性向上
太陽誘電は電極材料のコバルトを電解質にも加え、固体電解質を電極と一緒に焼き固めた電池を試作し、4000回の充放電を繰り返しても当初の8割の容量を保つことを確認した。

上記の様に期待を集める全固体型リチウムイオン電池だが、固体電解質にはまだ
1.急速充電で内部に結晶(デンドライト)ができショートする問題
2.開発された固体電解質は硫黄を含んでいるため空気中の水分に触れるとガスが発生する等の問題がある。
これらの問題解決の先には更に量産化技術の確立が控えている。
これら成果と問題を俯瞰しながら、自動車会社、化学系各社が競って固体電解質使用の
全固体リチウムイオン電池の開発を競っている。

  上記の現状まとめ(12/9日経産業新聞参考)

高出力全固体電池の開発の現状と将来性
特性 リチウム

イオン電池

全固体電池
現在 将来
出力 新材料で改善
容量 電極要改善
寿命 一部十分な結果あり
急速充電 内部結晶発生
量産 水分でガス発生

上記の様に現状は全固体型電池は開発途上であり、特に化学反応のメカニズム解明が必要と考えられている。

 

EV で出遅れていたトヨタは2020年代前半までの実用化に向け、EV用次世代バッテリー「全固体電池」の開発を急いでいる。


そしてハイブリッド車(HV)などを含めた電動車の販売を2030年ころに全販売台数の50%程度まで引き上げる計画を明らかにした。具体的には、電気自動車(EV)と燃料電池車(FCV)で100万台、HVとプラグインハイブリッド車(PHV)で450万台、合計550万台の電動車販売を目指す。

またEVを2010年に出していた日産は20年代の後半に固体電池での実用化を目指すとしている。
全固体電池は、自動車メーカー以外にも様々な企業が研究に取り組んでいる。
西独ボッシュ、村田製作所、日本特殊陶業等。
更にあの家電の英ダイソンが全固体電池を載せたEVを20年までに売り出すそうだ。

今後各社の全固体電池関連ニュースに注目して行きたい。

 

<参考資料等>
1.そもそもリチウム電池とは(リチウム電池の基礎)(おさらい)
リチウムイオン電池の豆知識
全固体電池って何だろう?
③リチウムイオン二次電池(ウィキペディア)

2.固体電池の理解に役立つお薦めサイト
参考1.菅野教授が語る、EVはこう進化する
参考2.EV向け本命 5分で完全理解「全固体電池」.
参考3リチウムイオン電池の3倍以上の出力特性をもつ全固体電池を開発

3.トヨタとパナソニックの提携発表
トヨタとパナソニックが車載用角形電池事業の協業について検討を開始
そもそもトヨタは現在のどの会社よりも早く電池開発に関心をもっていたのだ。
(自動織機を開発した豊田佐吉は1925年、革新的な電池の発明に資本金と同じ金額(当時の100万円)の賞金を掛けていた。)

 

 

 

 

エコプロ2017、ナノセルロース(CNF)展

先日(12/7,8,9)東京ビッグサイトで開催された「環境とエネルギーの未来展エコプロ2017」に行ってきた。
本イベントは環境に配慮した製品やサービスを展示し、「持続可能な社会の実現に向けて」をテーマに600以上の会社・団体が出展。
国連が定めたSDGs(持続可能な開発目標Sustainable Development Goals)に対応し、リサイクル技術クリーンエネルギー関連の展示がされた。詳細は主催のHP参照
この中で特にCNF(セルロースファイバー)について各社資料を参考に其の一部をご紹介.

(ナノセルロースサイト写真から)
各社カタログを入手したが、偏り無く伝えていたのは産総研の資料だったので主にこれを元に説明します。

セルロースナノファイバー(CNF)とは、一言で言えば植物繊維をナノメートル単位にまで微細化した物です。

<製造プロセス>
植物(木、竹、草等)→チップ→脱リグニン→パルプ→下記A、B処理

A:パルプを化学薬品で前処理し物理的に解繊する。
TEMPO触媒酸化(下記注1~3)リン酸エステル化が使われ、
完全ナノ分散した約3ナノメートルの透明なCNFとなり工業用として幅広く活用される。
カルボキシメチル化(CMCしたものは数ナノから数百ナノとなり、食品・化粧品の増粘、分散安定剤として使われる。

B:パルプを前処理せず
①濃硫酸で分解する
セルロースの短繊維(ミクロフィブリル)が非結晶領域で分解され紡錘状の結晶が得られる。これはセルロースナノクリスタルと呼ばれている。(現在メーカーはカナダの2社のみ)
②機械処理だけでセルロースをほぐす
次の3工程で細かくする。
(1)剪断・・・約2500気圧に高めたパルプ分散液を極細のノズルを通して細く裂く
(2)衝突・・・2つのノズルから相対速度マッハ4の高速で溶液同士をぶつけて砕く。
(3)キャビテーション・・・ノズルから噴射する時に急激に圧力が下がり気泡が生じ、この気泡が破裂する時の衝撃で更に細かくなる。
これで約20nmの大きさになる。生産性は高く、低コストで製造出来る。

C:チップをそのまま解繊(解きほぐす)
セルロースの表面にリグニンが付着しており、分散もしていない。外観もリグニン由来の茶色となる。リグノセルロースとよばれる。

特殊セルロース:微生物を使って生合成する
糖質、グリセリンを原料として酢酸菌という微生物にセルロースを合成させる。
このセルロースは「バクテリアセルロース」と呼ばれ、食用、工業用に用いられる。

<特性と想定される用途>
1.軽量・高強度を利用

①プラスチックに添加・・・強化プラスチック(ヘルメット等)、発泡材料、
3Dプリンター用樹脂、防弾チョッキ、住宅建材
②ゴムに添加・・・・・タイヤ(カーボンブラック代替)、スポーツシューズ(靴底)、
③紙に添加
スピーカー振動板他、製紙用各種用途添加剤
2.透明性
透明保護フィルム
3.石英並の低熱膨張
電子基板、電子部品
4.ガス遮蔽性
食品包装用フィルム、電池部品
5.細孔の制御が可能
濾過材料、担持材料(細胞培養基材)、ドラッグデリバリー(DDS)システム
6.増粘性の制御が可能
増粘剤、塗料・インキ・顔料、化粧品、ガス・オイル掘削用
7.表面積が大きい
消臭機能のあるオムツ

注1)
化学処理のTEMPO酸化は、東京大学の磯貝明教授らのグループが開発し、高効率でCNFを調整する技術で、アメリカ化学会のAnselme Payen賞を受賞しました。

注2)
“森のノーベル賞”に日本人のセルロースナノファイバー研究が授賞

注3)
TEMPO酸化、少し詳しくはここから

<会場の写真及び展示パネル>
企業や大学・団体等の研究・開発状況を紹介する展示パネルを撮影したので幾つか貼付します。(尚スマホで撮影したので細かい字は見えず概要のみでご了承下さい)

 

最後に、環境省が主催するCNVプロジェクトをご紹介。

VはEVやFCVと同じVehicleつまり車であり、自動車の各種部品・部材をCNFで作成し、材料評価から実機搭載までを一気通貫で実施、早期社会実装に向けて貢献するというもの
京都大学が代表技業者となり大学、研究機関、企業等計21の機関で構成されている。

今後共製造技術進化と応用の高度化及び製品の多様化に注目して行きたい。

 

 

 

 

 

 

日本の太陽光パネルメーカーの生き残る道は?

日本の太陽光パネルの世界シェアが10年前から大きく後退してしまっている。

かつて(2005年)日本の太陽光パネルが世界の生産量の上位トップ5社の中で4社を独占していた。
(1位シャープ、2位Qセルズ(独)、3位京セラ、4位三洋電機、5位三菱電機と日本勢は約50%を締めていた。

しかし2016年現在、1位ジンコ・ソーラー(中国) 2位トリナ・ソーラー 3位カナディアン・ソーラー(カナダ) 4位JAソーラー(中国) 5位ハンファQセルズ(韓国)と日本勢は5位以内には入っていない。なんと10位圏外に陥落してしまったのだ。

液晶やELも最初に革新的な製品を出しながら、結局は外国勢に負けてしまったパターンと同じだ。携帯は国内だけで生き残っているためガラパゴス携帯(ガラケー)といわれている。

太陽光パネルで日本勢が外国勢に負けた理由としては次の様な要因が揚げられている。
1.外資参入を阻む複雑な流通
2.買取制度によるコスト意識の低下
3.国内製を好むユーザー
このよう国内向き志向な要因で価格競争力を失い外国勢に席巻されてしまった。

具体的には
1。海外ではパネルメーカーがパネルの施工・保守までを一気通貫で行う。
これに対し日本では中小工務店が施工を担当するが、メーカーと工務店の間に住設機器販売店が存在するので、どうしてもコストが上昇する。ただ日本の狭くて複雑な形状の土地や住宅・ビルの屋上にパネルを置くには中小工務店が必要だった。

2。再生エネでつくった電気を一定期間決まった価格で買い取るFIT制度が始まったのが12年7月。太陽光の場合当初は普及促進を狙い1kw時40円と非常に高額に設定された。導入には効果が大きかったが結局この高さがユーザーのコスト意識を薄れさせメーカーのコストダウン努力にブレーキを掛けてしまった。
買取価格は年々引き下げられて現在1kw時21円になっており、18年には20円、そして数年後には10円前後まで下がる見通しではある。
しかし、中東のドバイでは4円で売電しても採算があう太陽光発電がある。世界1位のジンコ・ソーラーと丸紅が3円を切る事業に着手しているのだ。

3。日本のユーザーは、工務店が安い外国製を提案しても、割高な日本メーカーの方を選ぶという。その心理は住宅を一生の買い物と考えることから屋根の上のパネルも同じような感覚を持つため、安さよりも信頼感や知名度に重きを置くためだそうだ。
しかし最近は消費者も割安な海外パネルに目を向け始めている。

パネルの生産増大に関して、中国の上位メーカーは日本メーカー京セラの年間出荷量に当たる分程の生産能力増強を毎年実施しコスト競争力を高めている。

日本のメーカーはパネルを単体で売る事業モデルはもはや出来なくなった。

それでは日本のパネルメーカーの生き残り策は?

1.生活の質を向上させる高度な製品・システムとする
住宅用太陽光パネルで作った電気を、単体畜電池やEVの電池も組み合わせてAIで家庭用エネルギー管理システム(HEMS)を構築しネットゼロエネルギーハウス(ZEH)を目指す

 

高変換効率太陽電池の開発とこれを使う高効率パネルの製品化
生産量では外国勢に席巻されてしまった日本メーカーだが日本のパネル開発力はトップレベルを走り続けており、その技術には世界が一目置く。
其の1.今年のノーベル賞候補にもあげられた、桐蔭横浜大学の宮坂力特任教授が開発した薄くて軽い「ペロブスカイト型太陽電池」だ。
薄膜型で軽く圧倒的に低コストで作成出来る。性能もシリコン製に近づいている。
其の2.カネカも8月NEDOとエネルギー変換効率が結晶シリコン太陽電池では世界最高の変換効率26.63%の太陽光電池を開発した。
其の3.換効率60%以上が期待される量子ドット太陽電池の開発も進行中だ。
これらの新型高変換効率の太陽光電池の製品化を行うことができれば再び日本メーカーが躍進する日がくると期待できる。

ところで、外国製の安いパネルを使って日本が活躍する方法もある。
商社の丸紅は外国製の安いパネルで大規模な発電所の建設をアラブ首長国連邦ドバイで行っている。
丸紅関連サイト1日経
丸紅関連サイト2EE times japan

今後もどしどし世界各地に建設してもらいたい。
(個人的にはこれが原子力発電所の抑制・廃棄につながると思う)

<参考サイト>
2.高変換効率太陽電池の開発関連
宮坂力特任教授が開発した「ペロブスカイト型太陽電池
NEDOとカネカが開発の換効率が26.63%の太陽光電池
量子ドット太陽電池

1.高度な製品・システム関連(ZEH)
資源エネルギー庁
セキスイ

 

尚本稿は日経産業新聞10.25他を参照した。

 

 

 

2017年ノーベル賞結果(科学系3賞概要)

今年の自然科学系ノーベル賞の発表が終わった。
残念ながら日本人の4年連続受賞はならなかった。
しかし改めて考えて見れば世界中の研究者の数多くの業績の中から物理、化学、医学生理学の中から1件だけ選ばれることは大変なことと改めて思う。

さて今年2017年の受賞者とその業績について簡単にまとめておきたい。
以下3賞の概要。

1.医学生理学賞
受賞者
:米国3人

ジェフリー・ホール氏(米ブランダイス大名誉教授、72歳)、
マイケル・ロスバッシュ氏(同大、73歳)、
マイケル・ヤング氏(米ロックフェラー大教授、68歳)

受賞業績
約1日周期の体内時計の仕組みを明らかにした

内 容:
人間の身体は,24時間のリズムで変化しています。活動や睡眠、血圧や心拍                数、血液成分、ぼるもん分泌の変化等こうした周期のことを,サーカディアンリズム             (概日リズム)と呼びます。一般には「体内時計」と言ったりもします。
この概日リズムの研究はまず1930年代植物について、次に1970年代にカリフォルニア大の2人の博士によってショウジョウバエに突然変異を起こさせ、睡眠時間の異常から染色体の一定領域にリズミにかんする遺伝子があることを突き止めました。
今回の受賞者によりこの遺伝子を最終的に特定しピリオド」と名付けられた。
ピリオドによって作られるタンパク質は夜間に増え昼間分解され
生体内でタンパク質の量を調製することで体内時計の仕組みが出来ている。
「ピリオド」は人間でも見つかり、この仕組が多細胞生物に共通に存在し、
睡眠や体温、血圧の調整、ホルモンの分泌にも影響していることが分かってきた。

業績役割
ホール氏とロスバッシュ氏のグループとヤング氏のグループが1984年に独立に関与遺伝子を発見しピリオド遺伝子と命名。
さらにヤング氏らは1995年,概日リズムを生み出すもう1つの遺伝子,tim(timeless)遺伝子を発見。

参考サイト:新聞各誌と以下のサイトを参照した。
1.日経サイエンス
コメント:分子生物学者で青山学院大の福岡伸一教授は、「高等生物で遺伝子と行動との関係を最初に解明し、行動の様な複雑な生命現象も遺伝子で説明出来る筋道を付けた」と話す。

2.物理学賞
受賞者
:米国3人

レイナー・ワイス氏(マサチューセッツ工科大名誉教授、85歳)
バリー・バリッシュ(カリフォルニア工科大名誉教授、81歳)
キップ・ソーン氏(カリフォルニア大名誉教授、77歳)

受賞業績:レーザー干渉計重力波の観測
レーザー干渉計重力波観測装置LIGOを使い、アインシュタイン博士が100年前に予言した時空の歪み「重力波」の観測に世界で初めて成功した。

受賞者の役割:
ワイス名誉教授はレーザーと反射鏡を用いた干渉計という手法を使って重力波を観法を提案。
ーン名誉教授は重力波の理論の確率に貢献。
バリッシュ氏は計画を大規模な国際研究プロジェクトに発展させた。

3人はLIGOの建設と運営で中心的な役割を果たし、世界に置ける重力波研究の基礎を確率した。

賞  金:1億2000万円をワイス氏が半分、残りを2人で分け合う。

日本人の貢献
今回の受賞には日本人が大いに貢献している。
川村静児氏:東大宇宙研究所教授、
1989年に渡米しレイナー・ワイズ氏の研究チームに加わり、
新たなノイズ源を次々に見つけ出し、僅か半年でLIGOの感度を1000倍に高めた。
これでプロジェクトに予算が付くきっかけを作った。現在はKAGURAで中心的な役割。
小野 潤氏:LIGOのライバルチームであるドイツのGEOの元研究員
大学院時代の92年ドイツに渡り鏡の配置や位置を工夫して、レーザー光から重力波の微弱な信号を効率よく取り出す手法を考案した。この方法はLLIGOやViragoやKAGURAにも採用されている。
新井宏二氏:米カリフォルニア工科大上席研究員
国立天文台(東京都)から8年前に米カリフォルニア工科大に移り重力波の検出に直接携わった。

世界の重力波観測装置:
LIGO(ライゴ):(米国ワシントン州とルイジアナ州で2台地上、長さ4km)
Virgo(バーゴ):(イタリア、地上、長さ3km)
KAGURA(かぐら):(日本、岐阜県神岡鉱山地下、長さ3km、2019年春より本格観測が
可能になる)
LIGO India(インド);計画中
GEO600HF(独・英):計画中

重力波とは

そもそも重力波とは
ブラックホール等の非常に重い天体が運動する際に、時間や空間が伸び縮みする現象。アインシュタインが1916年に一般相対性理論で存在を予言した。しかし信号が非常に微弱でこれまで観測出来ていなかった。

重力波研究・観測の歴史ここから
LIGOはレーザー光で、重力波による空間の伸び縮みを超高精度で測定するもので、本格観測を始めた直後の2015年9月、約13億光年先にあるブラックホール2つからなる連星が衝突・合体した際に生じた重力波を捉えた。
(勝手な思いだが、この「幸運」は、2002年ニュートリノの観測でノーベル物理学賞を受賞した小柴昌俊氏がカミオカンデの運転を再開した翌月、誰も予期していなかった大マゼラン星雲の超新星爆発でのニュートリノを捉えたのと似ている?)

尚 最新ニュース(2017.10.2)では、
米国のLIGOと欧州のVIRGOのチームは8月14日共同で重力波を検出したと発表した。VIRGOでは初めて、LIGOでは4度目。更に3台で同時観することでLIGO2台だけのときよりも重力波の発生領域を10分の1に絞り込めたそうだ。

2016年2月11日のニュース
アメリカ東部時間の午前10時30分(日本時間12日午前0時30分)に、LIGOグループとVIRGOグループが行った重力波の観測結果についての記者会見を受けた佐藤勝彦自然科学研究機構長のコメント

重力波研究の今後
重力波観測が軌道に載った今後は、世界の研究者は日本のKAGURAの動向に注目しているそうだ。
なぜならLIGOやViro以前は日本のTAMA300という装置が世界をリードしていた実績があり、LIGOで米国に感度や性能で追い越されたものの、新装置KAGURAで追い越しを狙っているから。KAGURAは検出器の振動を極力抑えるため地下環境とで極低温での測定という2つの大きな長所がある。
KAGURAの完成がもう数年早かったら・・・という思いは日本の研究者にはあると思う。
が、これから新発見が続々でてくることを期待します。

3.化学賞
受賞者
:スイス、米国、英国の3氏。

・ジャック・デュボッシェ氏(スイスローザンヌ大名誉教授)
・ヨアヒム・フランク氏(米コロンビア大教授)
・リチャード・ヘンダーソン氏(英MRC分子生物研究所)

受賞業績:極低温でのタンパク質など生体分子を観察する「クライオ(極低温)電子顕微鏡の開発
選考委員会は「生化学を新しい時代に導いた」と高く評価。

クライオ電子顕微鏡は蛋白質などの生体組織を液体窒素で瞬間冷凍させ観察することで生体に近い状態のまま高解像度で観察できる。これによりウィルスなどタンパク質の構造を原子レベルで解析することが簡単になった。これらの成果は生命科学と創薬の研究開発に大きく貢献した。

研究開発の経緯
従来ある電子顕微鏡は真空にする必要があり、電子を照射することにより水分が蒸発し、構造が破壊されてしまい生きたままの状態で見ることが出来なかった。
ヘンダーソン氏はグルコースでタンパク質を被うことで電子顕微鏡の真空空間でタンパク質が乾燥しないことを発見し微弱な電子ビームを使うこと等の工夫で電子顕微鏡による生体を観察することに成功。
フランク氏は其の技術を更に向上させ、2次元画像から鮮明な3次元画像を再現する方法などを考案、
デュボシェ氏は液体窒素で-160℃に冷やしたエタン中で生体試料を急速冷凍することで生体分子の立体画像を正確、鮮明に観察出来る手法を考案した。

<参考サイト>
参考サイト1
参考サイト2
参考サイト3

賞金:等分

今年の科学系は意図されていたのかどうかは不明だが、単品系ではなく、自然・人間の本質に迫る内容で統一されているようだがはたして・・・。

参考サイト3の中の言葉から抜粋。
「今年のノーベル賞は物理学が宇宙の時空構造、化学が生命の物質構造、医学生理学が意識の時間認知構造の本質に肉薄する素晴らしい業績をラインナップした、実に品位あるセレクションになっていると思います。」

同感。

 

4年連続なるか。日本人ノーベル賞受賞

10月に入るとすぐに恒例のノーベル賞だ。

自然科学系3賞は、10月2日に生理学医学賞、3日に物理学賞、4日に化学賞がそれぞれ発表される。
昨年は東工大の大隅良典栄誉教授生理学医学賞を受賞し、4年連続で日本人受賞者が誕生するか期待が高まる。

以下3つの分野で、私の独断も含めて今年受賞の有力候補者と其の研究内容項目を挙げる。

1.生理学医学賞

(1)京都大学の本庶佑(たすく)特別教授
体内の異物に抵抗する免疫ブレーキ役のたんぱく質「PD―1」を発見
PD―1の働きを抑えれば、免疫細胞によるがん細胞への攻撃が再活性化することを
発見し、これを応用した小野薬品工業の抗がん剤「オプジーボ」の開発につながった。
日本のノーベル賞と言われる京都賞を受賞。

(2)東京農工大学の遠藤章特別栄誉教授
コレステロールを下げる薬の開発につながった物質「スタチン」を発見した。
この業績で山中伸弥教授や大村智特別栄誉教授も受賞したガードナー国際賞を受賞
更に日本国際賞ラスカー賞なども受賞している。

(3)大阪大学坂口志文特任教授
花粉症をはじめとするアレルギーの予防・治療が可能になるかもしれない
夢の細胞「制御性T細胞」の発見

(4)独、米の2氏と石野良純九州大学教授
全遺伝子情報(ゲノム)を自在に変えられるゲノム編集技術の一種「クリスパー・キャス9
こちらも

2.物理学賞

年ごとに受賞分野に傾向があるといわれているので17年は天文・素粒子分野からの受賞が濃厚だ。

1)米国勢
時間と空間の歪みが波のように伝わる現象「重力波」の観測
15年9月に米国の研究グループが重力波望遠鏡「LIGO」(ライゴ)で重力波を初検出、
重力波天文学」という新しい分野を切り開いた。
しかしまだ早すぎるような気もする。

それなら、(スケールが違いすぎるが)
14年の物理学賞の青色LEDの様に、世界の人々に大いに役立つ製品の開発
実績ということになれば、

(2)佐川眞人氏
超強力磁石のネオジム磁石の開発
82年の開発から既に30年以上、最強の座に君臨している。
ネオジム磁石でモーターに革命的変化をもたらし、産業用ロボットや電子機器、
EV等への貢献度は非常に大きい。

(3)東京工業大学の細野秀雄教授
鉄による超電導体、酸化物半導体「IGZO」アンモニア合成触媒(化学賞だが便宜的にここに記載)の開発。
が挙がられる。どれもノーベル賞級の発明だと思う。

3.化学賞
化学賞は有機化学や生体分子科学、物質材料など、幅広い分野から選ばれる。
昨年は有機化学分野の「分子機械」が選ばれたため、今年17年は生化学や材料などの研究者が有力と言われている。

とは言っても、「広く世界中の産業、生活に役立っている製品の開発に対して」であれば
何と言ってもリチウムイオン電池ではないだろうか。
(1)グッドイナフ教授、旭化成顧問の吉野彰氏の2人と、
東芝リサーチコンサルティングの
水島公一氏

(2)中部大学の山本尚教授
 物質同士の反応を活性化する触媒の研究に取り組み、「酸触媒」という触媒に特殊な分子を結合させると、目的の物質を効率的に取り出せることを発見した。
歴代のノーベル賞受賞者が事前に受賞した人が多い、「ロジャー・アダムス賞」を
受賞している。日本人ではノーベル化学賞を受賞した野依良治氏に続き2人目。

(3)九州大学の國武豊喜特別主幹教授
 人工細胞膜の作成で人工細胞や膜たんぱく質などの研究が進展した。
細胞では脂質分子が二重膜を作り、外界と内部を隔てる。この膜は極めて破れやすく、人工的に再現するのは不可能と思われていた。

(4)東京理科大学の藤嶋昭学長
 光触媒の発明。毎年挙がっている。

(5)桐蔭横浜大学の宮坂力特任教授
次世代太陽電池「ペロブスカイト太陽電池」を発明。

尚、産業、社会への貢献度の大きい基本材料である
炭素繊維、光ファイバー(光通信)でのノーベル賞に関してはあまり話題にならないが、
過去これらへの授与はないようだ。
これらは全世界の生活・産業への貢献が非常に大きいので、その貢献者にはやはりノーベル賞がふさわしい。

今年の発表は後数日、静かに待つのみだ。

尚ノーベル賞の選考についてはこちらをご参照。

 

 

ノーベル賞受賞者の選考過程


今年もノーベル賞発表の月(10月)が近づいて来ました。
この所日本人が連続で受賞しているので今年も大いに期待が持てますね。

世界にはノーベル賞を上回る賞金をだす賞も幾つかありますが(最後に記載)
やはりノーベル賞は其の歴史と格で最高の栄誉であり、特別の賞として世界中が認める賞です。

ノーベル賞は、生理学・医学、物理、化学、文学、平和、経済の6賞がありますが、
以下自然科学系の3つの賞だけに言及することにします。

ノーベル賞の第一回目の授賞式は1901年12月10日に行われました。
ノーベル賞を授与するのは、物理学と化学賞はスエーデン王立化学アカデミーで
生理学・医学賞はスエーデンにあるカロリンスカ研究所です。

ところでこのノーベル賞の選考はどのようにして行われているのでしょうか。
受賞者の選考過程は受賞後50年までは明かされません。

受賞者決定までの大きな流れとして、

1.推薦依頼の発送
選考を担当する各組織が設置するノーベル委員会が前年の9月に該当分野の専門家や過去の受賞らに受賞候補の推薦依頼を発送する。
推薦依頼は各部門3000人を超える。

2.翌年1月推薦締め切り

3.選考作業開始、
物理学賞や化学賞の場合は1次候補者250人~300人を対象に約半年を掛けて絞り込む。
観点は、推薦された研究者が本当に最初に手掛けたものか、
同様の成果を挙げた研究者が他にいないか等を調査。
特に拘るのは最初かどうかと言う点。
この一連の選考作業に巨額の費用と手間を掛けて徹底的に調査していることが、ノーベル賞が権威を維持している理由の一つとされる。
受賞者は1部門3人までと人数が絞られていることも「希少価値」を高めている。
しかし、受賞回数に制限はなく、同じ受賞者に何度も受賞することも出来る。
(過去には4人が2度ノーベル賞を受賞している)

4.受賞者の発表(10月)
最終選考は発表日当日に行われることが慣例になっており、受賞者をマスコミが事前に知ることは出来ない。
今年の発表は、医学生理学賞は10月2日、物理学賞は10月3日、化学賞は10月4日となっている。

5.授賞式(12月)
ノーベルの命日である12月10日に、スエーデンのストックホルムで行われる。

因みに
1.ノーベル賞の賞金額
過去何度も変動してきたが、
2001年には設立当初の賞金レベルを回復し、2001年からは1000万スエーデン・クローネだったが、2012年(山中教授の受賞年)から800万スエーデン・クローネとなった。
9月25日現在1クローネ約14円として800万スエーデン・クローネは1億1千200万円)

2.複数受賞者の賞金の分配について
2人の場合は折半、3人の場合は3等分か、貢献度の大きい人が半分、残りを2等分(4分の一)とされている。

3.ノーベル賞受賞者数の国別ランク
1901年以降の統計で見るとアメリカは別格として、日本はイギリス、ドイツ、フランスに大分離されているが、こと2000年以降の数字では米国(52)、日本(17)、英国(15),ドイツ(7)フランス(5),ロシア(5)、イスラエル(5)と日本が2位と大健闘している。

ノーベル賞に関して詳しくは下記サイトをご参照下さい。
1.全図解ニュース解説 
2.ウィキペディア

 

尚、ノーベル賞の賞金額を上回る国際賞が新設されているのをご存知ですか。
近年ノーベル賞をモデルにしたと思われる国際的な学術賞が多数創設されている。
・米国で2012年、基礎物理学等3部門を対象に始まった「ブレークスルー賞
・13年から始まった英国の「クイーンエリザベス工学賞
・台灣がアジアのノーベル賞を目指して14年に設立した「唐奨
等がいずれも賞金額が800万クローネを上回り、特にブレークスルー賞は3000万ドルと破格だ
同賞の創設メンバーにはグーグル、フェイスブックの創業者らが顔を並べる。

しかし日本にもノーベル賞に匹敵する賞がある。
それは日本国際賞。(関連ブログご参照。)

今後ノーベル賞と共に上記の賞の行方にも注目して行きたい。

 

 

 

 

 

 

 

 

 

夢のマグネシウム合金、強さの秘密解明とその応用

飛行機の材料は強くてしかも軽い必要があり、現在で一般に良く知られている合金であるジュラルミン(超々ジュラルミン)が使われている。ジュラルミンはアルミニウムに銅、マグネシウム、亜鉛等を加えたもので其の技術はなんと戦前に開発されたものなのだ。
(ジュラルミンについて詳しくはここから。)

しかし更に軽くて強い材料が要望されており、其の一つの答えが、炭素繊維であり、既にボーイングのジェット機に使用されている。
ただ、炭素繊維は値段が高く、細かい賦形加工は難しい。
そこでジュラルミンや炭素繊維をコスト、性能で上回る材料(金属)が望まれている。

現在注目されているのはアルミより軽いマグネシウ合金だが、マグネシウム合金では、
これまで①燃え易い②弱いという2つの欠点が克服されていなかった。

しかし熊本大学の河村能人教授はこの問題をクリアした合金の開発に成功した。

KUMADAIマグネシウムとしてこれまで何度もニュースになりご存知の方も多いと思う。
KUMADAIマグネシウムの凄さについては、この動画1でよく分かる。

但し、今回のブログは、凄さの秘密を解説するのがメインなのだ。
尚記事の構成・内容は、NHK、Eテレ「サイエンスZERO」(軽い、強い、燃えにくい、夢の新マグネシウム合金)を参照した。

新合金の開発は、(非マグネシウム研究者として)国の新規マグネシウム合金開発プロジェクトに招聘された熊本大学河村教授がマグネシウムに別の元素を加えて其の性能を調べる実験を繰り返し、遂にその配合を発見した。それはマグネシウム(Mg)亜鉛(Zn)1%とイットリウム(Y)2%を加えるという条件だった。

従来のマグネシウム合金と較べて新合金の特長は、
1.曲げに対する変形→従来品はすぐ曲がり曲がったままに対し、しなるだけですぐ元に戻る。
2.引張強度→従来品は200MPaに対し500MPaで従来の2.5倍
3.燃え難さ→従来品が610℃で燃えるのに対し、910℃まで燃えない

この性能が世界を驚かせた。

ただ開発話の中でいくつかの疑問が生じるが、これについての答えは以下の通り。
1.これまでに上記の組成は検討されなかったのか
→同じ組成はあったが入れる量が違っていた。
2.燃え難くなるのはどうしてか
→Y(イットリウム)が酸素を通さない膜を作るので燃えにくくなる。
3.他の研究者が同じ組成で作っても強度が出ないのはなぜか
→この答えは河村教授自身にも分からないままであった。

しかし
A)東大の安倍英司教授のSTEM顕微鏡による原子配列状態の観察結果、及び
B)京都大学の奥田浩司教授によるSpring8での放射光を使った解析により明らかになった。
即ち、
1)Mg(97)/Zn(1)/Y(2)の合金のSTEM写真を調べるとZn+Yの白い層とMgの黒い層が交互に規則正しく整列していた。
これは「長周期積層構造(LPSO構造)」と呼ばれているもの。

2)上記3成分を配合した状態から徐々に温度を上げながら合金が出来る状態を放射光で観測すると
①最初ZnとYはMgの中でバラバラの状態で存在、
②温度が上がるとZnとYがくっつき始め166℃
③更に温度が上がるとこの塊が大きくなって行き(225℃→295℃
④そして自然に規則正しく並ぶ522℃

以上の現象は同じ配合で温度を上げてゆけば必ず出来ることを意味する。
それではなぜ河村教授が作った長周期積層構造の合金だけが強度がでるのか?

阿部教授が長周期積層構造(LPSO構造)を詳しく観察すると積層構造が折れ曲がった部分を見つけた。
顕微鏡の倍率を低くすると、三角形状となっている部分が沢山出来ていた。
この三角形は「キンク変形」と呼ばれ、これが強さの正体(原因)だった。
即ちキンク変形という結晶が歪んだ部分が入ると、次に全体を変形させようとした時、その変形に対する抵抗となっていることによることが判明した。
結論として、長周期積層構造(LPSO構造)+キンク変形が強さの秘密であった。
(詳しくは下記文献をご参照)
その1
その2.

それではなぜ河村教授が作った合金にはキンク変形が入るのか。

一般的な合金の作り方は、るつぼに金属の混合物を入れ、加熱して溶かし、鋳型に流し込んでゆっくり冷やし、鋳型から取り出す。原料を配合して溶かした後取り出す。
しかしこれには、キンク構造は入っていない。

その秘密は河村教授が昔から使っていた独特の方法にあった。
それは、金属混合物を溶かした後、小さな穴から噴出させ急冷しリボン状にする。
これを銅製の缶に詰め込んだ後、100トンの力で細長く押し出す。
この時、強い力で押されることでキンク変形が入り強くなっていたのだ。

では、通常の方法で溶かして作った合金を強い力で押し出し加工するとどうなるか?

果たせるかな(案の定as was expected)、強い金属が出来たのだ。

この長周期積層構造(LPSO構造)の合金を押し出し加工し、キンク変形させ強くする方法は材料工学分野では新発見であった。

その延長として、最近チタン合金アルミ合金についても強くなることが分かった。

この技術は一つの大きなブレークスルー技術となるかもしれず、
金属加工分野が大きく変わりそうだといわれている。

ここからは
軽くて、強くて燃えにくい新マグネシウム合金の応用研究について
1.航空機
(特に動画参照)
マグネシウム合金の航空機分野への応用が2014年に解禁された。
ただし、Mgの燃焼試験にパスしないといけないが、可村教授の合金は燃焼試験にパスした。
即ち航空機に使えるというお済み付きを貰ったわけだ。
2.自動車
当面はエンジンのピストン、ターボチャージャーの羽根等でエンジンの出力が上がり結果として燃費が良くなる。狙いは安価になった時のボディへの使用。(現行ハイテンを駆逐?)
3.宇宙
ロケット、衛星
上記1から3は燃費向上に寄与だが、以下は別の特徴が生かされた分野
4.医療
主成分であるMgの生体に対する特徴
・Mgは人体に必要なミネラルであり、人体に害はない。
・人体に吸収されやすい。
その他、Znも人体にあり、問題なく、Yについても特に記載はない。
製品への応用
50ミクロンのワイヤーが出来る様になり、ステント(血管拡張器)への応用が期待されている。
ステントは現在ステンレスやチタンと樹脂で作られているが、ステンレス等では一生血管内に留まるため、血栓をサラサラにする薬を飲み続けなけらばならない。また樹脂では一定期間後に体に吸収されて無くなるものもあるが、金属の2倍の厚さが必要でその分血管が狭くなる。
その点、新Mg合金は薄く、細く出来、また生体中で吸収されるので、まさに理想的な材料かと期待されている。
現在はステント形成技術の検討とマウスによる実験が行われている。
今後は基礎、応用の両面から研究を進めてゆく必要がある。

一般に
新材料が発見されてから実用化されるまでに30年位かかるので新マグネシウム合金も後
14,5年は掛かるだろう。しかし一旦実用化されればジュラルミンの様に100年以上使われるだろう。

放送内では竹内MCは敢えてレアーアースのYを使うことについては言及しなかったが、
やはり日本としては、最終的にはレアーアースを使用しない技術を開発する必要がある。
茨城マグネシウム工業会もハッキリそう言っている。

終わりに、
やや古いが、この動画2もおすすめ。メカニズム的な話は無いが、新マグネシウム合金の全体がよく分かる。

またこれからの研究者にとっては(どの分野でもそうだと思うが)、河村教授が動画1で何度も口にされている「マッドスルー」の覚悟が必要だろう。

これまでのマグネシウム合金全般について知りたい方には
誰にでも非常に解りやすいサイトがあります。ここをご参照。

 

 

 

 

IoT時代に見直される磁気テープ

IoT時代に尚必要となる磁気テープの容量向上技術の記事をご紹介

その背景
これまで記録材料の主役の座は、磁気テープからハードディスクに換わり、更に半導体記録装置(SSD)に換わろうとしている。

そのおもな理由はアクセス時間の短縮化だが、容量も著しく増加してきている。
しかし最近、IOTの普及などで企業や研究機関が大量のデータを保管するニーズが高まっている。

IOTやクラウドサービスの活用等に伴い2020年の世界のデータ量は13年比10倍の44ゼタ(ゼタは1兆の10億倍:10の21乗)バイトに増えると見られている。
この内約半分のデータはアクセス頻度が1年に1回以下というものの、保管義務がある「コールドデータ」とされ、大量の記録媒体の需要は高まっている。

そこで通常の業務などで利用頻度が高いデータはソリッドステートドライブ(SSDを使い長期間の保存は大容量データを比較的安価に保管できる磁気テープを用いると言った使い分けがなされている。

そこで磁気テープの更なる容量アップの必要が出てきたわけである。

1. 富士フィルム
 記録容量を従来の約66倍に高められる磁気テープ向け材料を開発(した。)
ストロンチウムフェライト磁性体」と呼ばれるもので、粒子の体積が現行の半分以下と小さいにもかかわらず高い磁気特性を備えている。
粒子を作り上げる過程で 原料の内容や配合の仕方などを見直した。
新しい磁性体を使うと一巻あたりの記録容量を最大400テラ バイトに高められる可能性があるという。10年以内の実用化を目指す。

上記記事は日経の小記事をそのまま採用したが、開発したのではなくどうも将来の話らしい。
技術は、全てバリウムフェライト(BaFe)を使った技術で、
サイト文をそのまま引用すると、
「現在主流となるLTO規格は第7世代となり、非圧縮時で1カートリッジあたり6.0TB(圧縮時で15.0TB)もの容量が格納できます。将来的には第10世代で1巻12.0TBを目指しており、磁気テープは中長期的、または半永久的なデータ保管にも最適であると言えます。磁気テープは今なお進化し続けているのです。」
ということらしい。

詳しくは下記サイトをご参照下さい。
1)ハードディスク(HDD)との比較
2)テープストレッジの全体像
3)富士フイルム「磁気テープ」高容量化への技術革新

 

2.ソニー
IBMチューリッヒ研究所と共同で従来の20倍の容量のデータを記録出来る磁気テープストレッジ技術を開発した。
ソニーが磁気テープと磁気ヘッドの摩擦を抑える潤滑剤を開発し、IBMチューリッヒ研究所の信号処理アルゴリズムなどを組み合わせて高い記録密度を実現した。

記録密度を高めるにはテープとヘッドの距離を狭くすることが必要だが狭くすると摩擦が生じる。この潤滑剤は摩擦を抑えて耐久性も高く磁気ヘッドがテープ表面を滑らかに走行出来る様にする。

従来はテープ1巻当たり15テラバイトだったが、新技術を使うと約330テラバイトを記録出来る。単行本に換算すると、1500万冊から約3億3000万冊に増えるという。

磁気テープは比較的コストが低いので、アクセス頻度が低い大量データの保存の必要性の高まりと共に、今後ますます需要が増えて行くと予想される。

磁気テープの記録向上方式は最初はソニー方式になりそうではあるが、将来的には、両者又は他の新技術を含めた相乗技術で最終的な磁気テープ仕様が決まりそうではある。
今後の推移を注目してゆきたい。

 

 

 

5Gは通信速度100倍で暮らしの革命が起きる

次世代通信規格5Gとは現在主流の方式(4G)の通信速度100倍、容量1000倍とされる通信技術で、これからの暮らしや働き方を大きく変える可能性を秘めており、国際競争も激しくなっている。
<これまでの流れ>

総務省参照サイトの画像より

第一世代(1G)では自動車電話サービスが始まり、肩掛けのショルダーホンが登場。
第二世代(2G)通話だけでなく、電子メールやインターネットも出来る様になった。
ただし、日のんの規格やサービスが海外には広がらなかったのでいわゆる「ガラパゴス携帯(ガラケー)」と呼ばれた。
第三世代(3G
2000年代の3Gではデータ通信が高速化。NTTドコモのサービス「iモード」が人気を集めた。更に音楽やゲームの配信も始まった。
現在は
・LTE(Long Term Evolution)(3Gの後継方式)と・第4世代(4G)の共存
(LTEは第3世代(3G)の移動通信システムをさらに高速化した規格。第4世代(4G)への橋渡しという意味で「3.9G」(第3.9世代)とも呼ばれている。一般的には、LTEも「4G」という表現を使っている場合が多い。)
そして
・第五世代(5G)へ
2020年を目途に世界で一斉に商用化が始まり、高速化・大容量化が更に進み、
動画配信など様々なサービスが生まれようとしている。

<5Gの必要性、必然性>
あらゆるものがネットに繋がるIoT時代の通信手段として現在より更に高速・大容量の通信技術が必要となり、通信速度100倍・容量1000倍の高速大容量通信の5Gは第4次産業革命の基礎インフラとみられている。

<5G規格の制定に関して>
狙い:いち早く5Gのインフラを整え新しいサービスを確率できれば世界競争を有利に導ける。しかし世界の通信規格の標準化は欧州や日本勢が主導する形から様代わりした。

5G規格は2015年9月から国際的な標準化団体「3GPP」が中心となり、策定を進めてきた。今年2017年3月には米ATT,米クアルコムやKDDI等の大手通信関連の40社以上が規格の早期決定で合意した。

ただ業界大手が神経を尖らせているのが、米通信最大手のベライゾン・コミュニケーションズの動き。16年から家庭向け5Gの実験に着手。18年はじめから商用サービスを始める計画だ。5G規格の最終的な決定を前に独自仕様の技術を採用した基地局設備を導入し他社に先行している。

<各国の国際競争状態>
・4Gまでの世界では技術でもサービスでも欧米勢がリードしてきた。
・ここに桁違いの利用者を抱える中国の台頭で主導権争いが混沌としてきた。
・韓国は18年2月の平昌冬季五輪で独自仕様の5Gを始め全国展開に踏み切る考えで
19年には全国で5Gを商用化すると宣言
・ソフトバンクは19年度中の商用サービス開始の方針を表明しており、NTTドコモやKDDIに先行する可能性もある。

<技術内容>
・通信速度:最大毎秒20ギガビットで現行の4Gの100倍以上。
データのやり取り時間は1000分の1秒以下と遅れは殆どない。
2時間程度の映画でも1秒程度でスマホで受信出来る驚異的な通信速度が最大の特徴


<必要なハード、ソフトと市場規模>

・高周波の電波を安定に取り扱う次世代の通信機器が大量に必要になる。
・英調査会社HISマークイットは主要国の5Gの件研究開発と設備投資の合計が25年から35年で年2000億ドル(約22兆円)の規模になると推計する。
5Gで生み出されるサービスの規模が35年には世界全体で12.3兆ドル(約1400兆円)に達すると試算。

<5Gのネットワークになると>
・防犯
・大勢人が集まる場所での不審人物の特定
ドローンのカメラが新国立競技場へ向かう群衆を空中から捉え、半径150メートルにいる数千人の映像をAIが解析し、攻撃性や緊張度、ストレス等50以上の指標で異常値を示す人物を特定できる。
自動運転の安全向上
4Gでは
高速走行する車がブレーキを踏んでも後続車のブレーキが作動するまで1メートル以上進んでしまう。5Gならわずか数センチだ。
・携帯電話では
20年前は音声だけだった携帯電話は3Gになり、音楽配信や「写メール」等画像のやり取りが出来る様になったが4Gではスマホの普及と相まってドラマを見たり、買い物をするなど、生活の基板となった。5Gではあらゆる産業を繋ぎ、立体映像が手のひらで踊る時代がくる。
・東京5輪では
KDDIの実証実験では、サッカーの試合を4つの8Kカメラで撮影し3次元映像に合成してテレビやスマホ等のディスプレーに送る。ポイントはコントローラーで視聴者が見たい視点を自由に選べること。ピッチでプレーする選手の視点に設定すれば試合に「参加」することが出来る

<通信実験スタート>
<国内では>
・総務省の5G総合実証試験(平成29年度)リストhttp://www.soumu.go.jp/main_content/000485322.pdf
(総務省が25億円で6団体に委託)

この他各社新聞記事等から集めた情報は以下の通り
・総務省通信大手が全国で実証実験を始めた。各社は2020年からサービスを始める計画
・今年度(2017)は高画質な動画を素早く送ったり、自動車を無線操縦する実験がおこなわれる。
・NTTドコモは5月世界初の8K中継に成功
・東武鉄道と5月22日東京スカイツリーと伝送実験を開始。周辺施設に5G技術を体験出来る展示コーナーを開いた。展望台から取った8K画像が地上で見れる。
・九州大学のキャンパスでDeNAと5Gを使った自動運転バスの運行管理実験も進行中。
・KDDIは移動中のバス内に8K映像を送る実証実験を公開した。
また建設機械の遠隔操作の実験を始める。
・ソフトバンクも沖縄件南城市で5Gによるバスの自動運転を進めている。
・ソフトバンクは送信と受信のズレ(遅延)の少なさを生かす実験を秋に始める

<市場の大きさ>
米コンサルティング大手のアーサー・D/ritoru 等は5Gが生み出す市場が26年には1.2兆ドル(約130兆円)になると推計する。今後の新しいサービスや端末を同開発し、市場を取るかで世界の企業競争の構図はまた大きく変わる。

<懸念される問題点>
・5Gで使う電波は周波数が高く、直進性が高いので遠くまで届きにくい
安定して使うには多くの基地局が必要になるため設備投資がかさむ恐れ。
・多額の設備投資が必要となるため、PHSの例もあり、戦略を謝れば致命的な打撃を受ける。

日本の5G戦略での5つの課題>
1.実用化の時期
国際電気通信連合(ITU日本20年の実用化を目指している。しかし時間的制約がない海外の通信会社やメーカーは、実験を先行することで、規格作りやアプリケーション作りなどで主導件を握ろうとしている。日本はそうした海外の動きを睨みながら実験を進めて行く必要がある。
2.利用する周波数
ITUでは24ギガヘルツから86ギガヘルツを利用することが合意された
。この周波数帯は日本メーカーにとっては必ずしも得意な領域とは言えず、今回の実証実験でも欧米勢が推す28ギガヘルツ帯が使われた。日本としては総務省を中心にGの周波数ロードマップを早急に詰める必要がある。
3.5Gアプリケーション技術開発の強化
5G技術でリードしているのはスエーデンのエリクソンやフィンランドのノキア、中国のファーウエイ(華為技術)といった世界の3大通信機器メーカーで、日本の実証実験でもこうした海外メーカーが技術を担っている。
基地局整備等の通信インフラでは海外勢の協力を仰ぐにしても、様々な装置をつなぐアプリケーション技術の開発では、NEC等日本企業のの積極的な参入を促し、日本のりードを保つ必要がある。
4.通信と放送の融合
総務省は超高精細のKI/8K放送の実用化時期Gと同じ20年としているが、CS(通信衛星)放送やBS(放送衛星)を軸に普及を図ろうとしている。しかし今回のドコモやKDDIの実験の様に8K映像の配信手段としては放送よりも5Gの方が様々なニーズに対応でき、有料化もし易い。
20年の実用化を睨み、改めて放送の融合のあり方を考えるべきであろう。
5.5G時代のデータ活用のルール作りやセキュリティ対策
5月末にビックデータ時代を睨んだ改正個人情報保護法が施工されスマホなどから得られる大量のデータを利用し易くなったIoTヘルスケアなどアプリケーション分野ごとにデータの所有権や利用可能な範囲、目的など様々なルールを定めてお必要があるだろう。

<5G通信用アンテナ技術>
・5Gは基地局から幅広く電波を飛ばす今の方式と違い、端末に向けて電波を絞って送り出す方式で基地局と端末を専用道路で結ぶイメージだ。
・NTTやKDDIが5月から相次で5Gの実証実験を公開している。
5Gの実現に必須なのが板状のアンテナ「Massive MIMO」(マッシブ・マイモ)だ。
外観は従来の棒状ではなく、スピーカーの様な箱型だ。
表面は通信用の電波を発信する金属片で作られたアンテナ素子が多数配置してある。
従来の棒状アンテナではせいぜい数個に対し8列x8列(64個)や16列x16列(256個)のものもある。
(5G用アンテナに関しては別途出稿予定。)

<5Gインフラ商機>
5Gが普及するためには大量のデータを伝送するインフラが必要だ。
5G関連のインフラには光ファイバー、通信設備、ソフトウェアー、データーセンター等がある。
まず光ファイバーでは、世界3位の古河電工:デンマークや米国の工場でガラス母材の製造装置を導入し製造能力を増強する。その他フジクラ、住友電気工業、や中国のファーウエイ(華為技術)などが成長している。
通信設備では、富士通やNEC、等、データーセンターは米グーグルや米アマゾンドットネットなどのIT大手が増強している。

最後に
5Gは日本が再び主役に立てる重要な戦略分野である。
5Gの技術開発やアプリケーションに開発に日本企業はもっと関与し政府や通信会社もそれを応援する必要がある。今回新たに始まった5Gの実証実はその成否を占う試金石と言えよう。
(日経産業新聞7/17、他参照した)

<参照サイト>
・第5世代移動通信システム 最新情報 東京オリンピック 世界に先駆けて実現へ

・2020年代に向けたワイヤレス関連の戦略 総務省

・ITSの概要
ITS(Intelligent Transport Systems:高度道路交通システム)とは、
人と道路と自動車の間で情報の受発信を行い、道路交通が抱える事故や渋滞、環境対策など、様々な課題を解決するためのシステム

総務省におけるITSの取組(平成29年3月15日)

“5Gは通信速度100倍で暮らしの革命が起きる” の続きを読む