カーボンナノチューブ(CNT)の新技術への応用

ナノカーボンといわれる炭素の基本素材は3種で、
発見の歴史順に
1.フラーレン(C60):炭素原子60個から構成されるサッカーボール状の分子
2.カーボンナノチューブ(CNT):炭素原子から構成される六員環がネットワークを作り、
それが単層あるいは多層のチューブ状につながった物質
3.グラフェン:単層CNTを切り開いた状態の一枚のシート(黒鉛の単層一枚)(参考サイト2
がある。
1のグラフェン発見者らは1996年に既にノーベル賞を受賞している。
日本人(遠藤守信氏信州大学の特別特任教授 、飯島澄男名城大学終身教授)の発見・研究になるCNTは毎年候補に上がっていた。
ところが3のグラフェンの方が2010年に先に受賞してしまった。
このような状況の中で更に、受賞するにはCNT研究の深化とその応用技術・製品としての更に大きな成果を世界に発信し、世界の推薦者及びノーベル委員会を納得させる必要があると考えるのだが。

CNTを使った技術開発(最近のニュース2件)

1.現行リチウムイオン電池の15倍の容量をもつ次世代電池の開発
物質・材料研究機構の久保佳実チームリーダーらはリチウム-空気電池の正極材料にCNTを採用し、従来のリチウムイオン電池の15倍の電池を蓄えることに成功した。
リチウムイオン電池の蓄電容量は負極のリチウムが溶け出し、正極で酸素を反応して析出する過酸化リチウムの量で決まる。
研究チームはCNTの不織布状のシートを正極に採用したところ、シートを押し広げるようにして過酸化リチウムが大量に析出しており、従来のリチウムイオンの15倍にあたる1平方センチメートル当たり30mA時の蓄電容量を確認した。
CNTの大きな表面積や柔軟な構造が大きな容量に繋がったとみている。
今後はセルを積層したスタックを作り実用化に近い形の開発を行う。
詳しくはここから

2.燃料電池の触媒として白金の代わりになる可能性ある技術
燃料電池は水素と酸素の反応から電気を取り出せ、排出するのは水だけの為、
クリーンなエネルギーとしての燃料電池への期待は大きい。
しかしその反応を起こすためには高価な白金が必要で高コストの原因となり普及の妨げになっている。
九大の中嶋直敏特任教授らは白金を使わない燃料電池用触媒を開発した。
開発した触媒は高純度のCNTを高分子で覆った表面にニッケルやコバルトからなる金属酸化物の微粒子を均一に付た構造だ。
基本性能実験では電気を生み出す能力は白金触媒よりまだ低かったが、白金触媒より耐久性は高かった。今後触媒性能の改善を行い5年後の実用化を目指す。
詳しくはここから

 

世界を一変させたネオジム磁石の開発

世紀の大発明と言われるネオジム磁石は1982年に発明されてから30年以上に亘って、最強の磁石として、電気自動車(EV)や風力発電、ロボットなどの普及に貢献している。
これを発明したのは、サラリーマン研究者だった佐川真人氏(73)。
毎年ノーベル賞にもノミネートされている。

日経産業新聞の仕事人秘録のコラムに同氏の幼いときから開発までの足跡が「ネオジム磁石執念一路」として連載(2016年12月7日から22日迄の全11回)されていたので、その概要をご紹介する。
<子供時代>
科学者を意識し始めたのは、小学1から2年生の時父親からノーベル賞の湯川博士の記事を読み聞かせてもらったのがきっかけ。その時「僕は科学者になってノーベル賞をとる」と両親に宣言したそうだ。(小学1,2年で、凄い!!)
小学6年の時父親の事業の失敗で貧乏になり兵庫県に引っ越した。
市立尼崎高校に進学。
<大学時代>
神戸大工学部電気工学科に入学。しかし電気工学には身が入らず、数学、物理、化学をよく勉強。
基礎研究がしたく、大学院に進学。永田教授の応用物理研究室で材料科学を学ぶ。
更に「ノーベル賞」を貰えるような研究をしたい」と磁石業界に人材を輩出した東北大学の博士課程に入学し、金属材料研究所では、自分でサビ防止のテーマを選び博士号を取得する。
<富士通時代>
大学の教員になることが出来ず、富士通に入社する。
配属された研究所ではこれまでの知見が全くないリレーやスイッチに使う磁性材料の開発を命じられた。
入社4,5年後、フライングスイッチに使う磁石の開発を命じられる。要は壊れにくい磁石の開発だ。
当時(1976,7年)はサマリウム・コバルト磁石が最強磁力とされており、この磁石の物理強度を高める研究を始める。

サマリウム・コバルト磁石の発明者は松下電器産業を経て信越化学工業の磁性材料研究所長を務めた俵好夫氏(この人はなんと歌人俵万智さんの父上だそうです。)

しかし研究をすすめるにつれ「なぜコバルトなのか」という疑問を抱く。
元素の中で磁性の強い元素は鉄、コバルト、ニッケルの3つだけだが、磁石の主成分は昔から鉄だった。だから本来なら鉄を主成分とする方が強い磁石になるはず。

コバルト主成分の考えは、1916年本田光太郎が鉄に多量のコバルトを合金化すると鉄だけの磁石の3倍も強い磁石になることを見つけKS鋼と名付け、そのKS鋼が世に出てから主流となった。
その結果それ以後アルニコ磁石(アルミニウム・ニッケル・コバルト)、サマリウム・コバルト磁石が開発される。

磁石は17元素からなる希土類(レアアース)を使うと強くなることがわかっている。
(希土類とは、スカンジウム、イットリウムとランタニド(15元素)のこと)
そこでどうせレアアースを使うのなら、コバルトより鉄の方が良いと素直に考えた。

当時世界中の研究者は「コバルトが必要」という固定概念のため、コバルトの一部を鉄に置き換える実験ばかりしていた。
しかし鉄の割合が2割を超えると磁気特性ががくんと落ちるため皆そこで諦めてしまった。

そこで100%鉄に置き換える(サマリウムを全く使わない)という発想で、なぜ鉄に置き換えても磁石にならないのかの理由を思索した。しかしアイデアは全く出なかった。

発明につながる着想は、1978年の金属材料研究所で開催された「希土類磁石基礎から応用まで」という会合で、東北大の浜野教授の短い説明から得た。
その説明とは「磁石になるには鉄と鉄の原子間距離が近すぎる」ということだった。

そこでレアーアースと鉄化合物の間に炭素やホウ素といった原子半径の小さな原子をにいれれば、鉄の原子間距離が広がるのではないかという仮説を立て動き始めた。

サマリウム+コバルトの代わりに、サマリウム+鉄と炭素やボロンを次々と試した結果
「サマリウム+鉄+ボロン」が有望という結果を得た。
レアアースと鉄だけの組み合わせの化合物ではキュリー温度(磁石が磁気を失う温度)が低すぎて実用磁石にならなかった。

ボロンがいいと分かり、サマリウムを除く16種のレアアース(つまり残り全ての)を混ぜてみた。すると「ネオジム+鉄+ボロン」がキュリー温度と磁気異方性(磁気モーメントの方向を固定する性質)が高いことを発見した。
しかし組成の他に、内部の磁化の乱れが全体に及ぶのを防ぐ為のセル状組織を磁石の中に作り込む必要があった。しかしこれが全然できなかった。

 

最強磁石を追い求めている内に、本来のテーマであるフライングスイッチに使う壊れないサマリウム・コバルト磁石が完成してしまった。

そこで今研究している「ネオジム+鉄+ボロン」の最強磁石の研究をしたいと会社(富士通)に申請したが却下された。

富士通研究所からは「磁石は材料メーカーがやること。半導体薄膜などの最先端の研究」を命じられたが、会社の方針に沿ったテーマ(磁気バブルメモリー等)を提案した。

昼は会社から認められた研究を、夜や土日は「ネオジム+鉄+ボロン」合金の研究を続けた。

 

30代後半になり管理職試験を受け合格し、特許の仕事に移り研究の第一線から退く。

磁石の実験がやりにくくなり、会社を去る決意を徐々に固めたいたためか上司との折り合いが悪くなり、強い叱責を受けた日、辞めますと啖呵を切りついに1982年1月38歳の時辞表を出した。

奥さんの承諾もあっさり貰えたが、辞表提出前から磁石研究を続けられる転職先として考えていた富士電気化学(現FDK)への転職は叶わなかった。

会社の規定で、辞表提出後3ケ月は在籍する義務があり、その間話しかけられることなく同僚は遠ざかって行った。しかしじっと座っているのは嫌で、大学の先輩でもある上司に空いている実験室を使うことを願い出ると、許可をもらうことが出来、溜まっていたアイデアを3ヶ月間で試すことが出来た。

この間で念願のセル状組織作りに成功し、成功した瞬間天井に手が届かんばかりに跳ね上がって一人で大喜びした。

転職先は関西の磁石メーカーに決めていたので、大阪に本社があった住友特殊金属の社長宛に

「コバルトを使わない最強磁石のアイデアがあると」手紙を書いた。

数週間返事が来ないので直接電話すると幸い岡田社長と直接会話することができ、面接後即採用となった。

<住友特殊金属時代>
住友特殊金属には1982年5月に入社。
まず「ネオジム+鉄+ボロン」の比率と添加元素の組成の検討に着手。
練っていた組成50通りのリストと製造条件を部下に渡し次々に試した。

正解はそのリストの中にあった。当時世界最強のサマリウム・コバルト磁石の記録もらくらく超えた。その時の比率はネオジム15、鉄77、ボロン8で今ネオジム磁石と呼ばれているもの。
しかし50℃以上になると磁力が急激に低下する欠点があった。

ネオジムの一部を希土類のレアーアースのジスプロシウムに置き換えると温度特性が格段に良くなった。摂氏200℃でも磁力は落ちなかった。
(ジスプロシウムは2010年に尖閣諸島の帰属問題で中国が輸出を停止)

82年8月から権利侵害されないように特許出願をどんどん進めた。
アメリカの研究チームも違う製法で出願していたが2週間早かった。

開発はとんとん拍子で進み発明してからわずか3年後の85年に量産を開始した。
ネオジム磁石の生産量は85年に年間200トン、86年400トン、87年800トンと倍倍ゲームで増えた。

主な用途は特に、HDDの磁気ヘッドを動かす駆動装置。サマリウム・コバルト磁石の2倍の磁力があるのでHDDの大容量化、エアコンの小型・省電力化はネオジム磁石が支えたと言われる。

ネオジム磁石の論文発表や特許出願でのトップネームを巡る社内関係のしこりで、在籍5年半の住友特殊金属を去る。住友特殊金属は2004年日立金属子会社化され現在完全に吸収合併されている。

<ベンチャー時代>
1998年2月住友特殊金属を辞めインターメタリックス(IM,京都市)というベンチャー企業を設立し世界を飛び回るも思うような成果は得られず。

2000年優れた事業を支援する「京都市ベンチャー企業目利き委員会」に選ばれる。
テーマはジスプロシウムが無くても耐熱性が高いネオジム磁石の開発。

2002年中小企業基板整備機構が運営する京大桂ベンチャープラザ(京都市)に入居し研究に専念。
そこで「プレスレスプロセス(PLP法)」という磁石の製法からプレス工程を省く新製法を工業化。
PLP法のメリットは、切り分け作業が無いので切り屑が出ない、酸素などの不従物の混入が無い、どんなに微細な粉末でも成形して磁石を作れること等。

磁石の粒径は小さいほど保持力と耐熱性が上がりジスプロシウムの使用量が減る。
この考え方は昔からあったがPLP法で工業化の道が開けた。

2010年秋に発生した尖閣諸島問題を端緒に中国がジスプロシウムの輸出を停止したことで脱ジスプロシウムの磁石開発が加速する。

三菱商事、大同特殊鋼、米モリコープの3社が出資し、磁石製造会社のインターメタリックス・ジャパン(IMJ)を設立。
13年からPLP法によるネオジム磁石の量産を始めた。
IMとIMJはともに大同特殊鋼の全額出資になり今年(2016年10月)顧問に迎えられるも自身は京大桂ベンチャープラザ内で、組成にちなんで付けたNDGEBというベンチャーで研究を続ける。
ネオジム磁石の生産は年10万トンを超え年10%のペースで増えている。

<終章>
そもそも鉄を主成分とする最強磁石開発の元になった考えは「磁石になるには鉄と鉄の原子間距離が近すぎる」という理論だった。
そこで原子半径の小さな原子をレアーアースと鉄の間に入れれば鉄との原子間距離が広がるだろうという仮設を立てて、「ネオジム+鉄+ボロン」という組成を発見。

しかし後の解明の結果、原子間距離は広がってはいなかったことが判明。
ボロンと鉄の電子が化学反応を起こしボロン付きの鉄がコバルトとほぼ同じ状態に変わっていた。(鉄のコバルト化という現象)

2012年、社会と学術に貢献した科学者を表彰する日本国際賞を受賞。
(日本国際賞は、日本版ノーベル賞と言われる)

好きな言葉に米アップル創業者のスティーブ・ジョブズ氏の「Stay hungry, Stay foolish」(貪欲であれ、愚かであれ)がある。

立てた仮設は間違っていたが、信念(磁性の強い鉄が一番いいはず)を元にコツコツとやり続けた。
開発の原動力は悔しさだった。

若い研究者には、会社が認めた公式テーマと自分が情熱を持てる非公式テーマの研究を同時に進行させることをすすめる。テーマは社会の潜在ニーズに基づいて選ぶ。

次の「ニュークリエーション」(従来の常識から離れた場所で研究が始まること)を生み出して欲しい。

<編集後記>
はじめにも書きましたが上記文は日経産業の2016年12月7日から22日までの11連載を要約したものです。
当初簡潔に要約するつもりが、省き難い部分がかなりあり省けず、結局かなりの量の文になってしまいました。
尚原文で詳細に知りたい方で、新聞で読みたい人は図書館に行けば見れると思います。(要確認)
ですが、サイトでもそのまま出ていますのでこちらの方が手軽に見れますね。

最初の頁のみ下記に示しますので頁をめくって見て下さい。
ネオジム磁石執念一路(1)~(5)
ネオジム磁石執念一路(6)

 

ネオジムを超える磁石の開発

現在最強の永久磁石はネオジム磁石だ。

(ネオジム磁石は現在大同特殊鋼顧問の佐川真人氏が日立金属時代に開発した世界最強の永久磁石だ。同氏はノーベル賞候補と言われている))

しかし電気自動車(EV)の性能向上、燃費向上のためにネオジム磁石を超える高性能な永久磁石が求められている。
そこで産官学でこの目的を達成するために鋭意研究がなされている。

自動車用駆動モーターとして使う場合、使用温度が150~180℃と高いので磁石の特性が低下する。
この対策としてこれまではディスプロシウム等の重希土類元素を添加して高温特性を維持していた。
しかし主に中国からの資源入手問題問題が発生しこれを避けるため重希土類元素を一切使わない次世代磁石の技術開発が進められている。

Ⅰ。ネオジム磁石の改良  

1.国内3社(日立金属、信越化学工業、TDK)の焼結法の改良によるアプローチ。
磁石合金を粉末にした後に結晶の向きをそろえて高温で焼固める方法。
磁石を構成する材料の結晶を細かくするほど保持力は上がり耐熱性が上がる。
現在は直径3~5ミクロンまで微細化されているが、更に細かくすると磁石が酸化しやすいという問題がある。 ネオジム磁石の高性能化HAL工法

2.ダイドー電子の「熱間加工法」(米GMのライセンス)に依る方法。
合金を粉末にせず溶かした磁性材料を急冷して微細な結晶をもつ磁石材料の塊を作る。
次にこの塊を高温で加圧して扁平にすると微細な結晶が自然に磁石に適した向きにそろう。
結晶の大きさは0.2ミクロンと焼結法の10分の1迄小さくすることができ耐熱性が高まった。

本磁石はホンダの新型車フリードに採用された。

 

Ⅱ。次世代磁石の開発状況

2012年国内9企業、2団体が集まり「高効率モーター用磁性材料技術研究組合(MagHEM)」が設立され開発が進んでいる。

その進捗状況
1.静岡大小林教授らの重希土類不使用の新磁石の開発。
サマリウム、鉄、チタン、コバルトを主成分とし安定剤としてジルコニウムを加えた。
200℃の高温域でもネオジム磁石の2から3割増しの磁力の強さが期待される、

2.産総研のサマリウム、鉄、窒素を含む新磁石の開発を進めている。

3.TDKはナノレベルで材料をコントロールする「ナノコンポジット磁石」の開発に取り組む。 レアアース代替技術に望むTDK
  

4.日立金属は17年4月に新設の研究所で新磁石の研究を進める

<備考>

欧米には大手の磁石メーカーは無い。しかし中国は国を上げてEVの普及を目指しており、既に欧州の自動車メーカーが駆動用モーターに採用したとの情報もある。
重希土類を使わない(使えない)日本は上回る技術力で対抗するしかない。

今後共ネオジム磁石を超える次世代磁石開発のニュースは要ウオッチだ。

 

次の機会で、昨年12月日軽産業新聞に連載された現大同特殊鋼顧問の佐川真人氏のネオジム磁石開発の秘話「ネオジム磁石 執念一路」をご紹介します。乞うご期待。

 

 

 

 

水素貯蔵物質、最新の技術

石油や石炭天然ガスに変わるエネルギーとしてクリーンで枯渇しないエネルギーの「水素」がいま注目されていますね。

水素の利用の仕方は1つは燃焼ガスとして、2つは燃料電池としての2つに大別されます。
そしてその製造方法や輸送、貯蔵・保管方法がいま世界中で研究開発されています。

水素の製造方法についてはいろいろありますが、以前そのうちの1つに少し触れたので、今回は貯蔵媒体(貯蔵物質)について。

水素の貯蔵方法(運搬媒体)には、
1.超高圧ガスタンクを使う。
2.水素を吸収(吸蔵)する物質を使う
3.水素と化合する有機物を使う
の大きく分けて3つあります。

それぞれの特徴は

1.高圧ガスタンクを使う
 燃料電池車、水素ステーション、水素運搬車などがある。
  充填密度を高めるために70MPa(700気圧)位の超高圧で充填される為
 タンクの耐久性や対圧性が重要であり、また危険で取り扱いにくいという 欠点がある。
2.水素を吸収する物質を使う
 2-1.古くから水素吸蔵合金が研究・開発されてきた。
 2-2.昨年水素貯蔵ポリマーが開発された。
 2-3.3月新規な水素結合物質合成の発表。
3.水素と化合する物質を使う
 有機ハイドライド法と呼ばれ、ベンゼンやトルエン、ナフタリン等の分子中のC=Cの不飽和結合部分に水素を結合させることで分子内に水素を貯蔵する。
但し水素の取り出しには特殊な設備が必要で燃料電池車向けには出来ない。しかし産出場所からや施設間の大量運搬には最適な方法。
尚今回は上記1,2,3の内特に2.について紹介します。
(1は省略、3は下記)

2-1.水素吸蔵合金

水素吸蔵(貯蔵)合金とは、大量の水素を可逆的に吸収および放出できる独特の性質を持った金属材料をいう。

特にマグネシウム(Mg)、チタン(Ti)、バナジウム(Mg)、ランタン(La)等の元素は、水素と化合して水素化物となる。これらの金属と他の例えばニッケル(Ni)、鉄(Fe)、コバルト(Co)等とある配合比(組成)で混ぜて合金にすると、圧力や温度を利用して比較的簡単に水素を吸蔵し、また可逆的に水素を放出することができるものが出来る。

水素吸蔵合金は1960年代にマグネシウム-ニッケル系合金が発見されてから各種の合金で特性の向上が図られて来た。

現在まで研究されてきた各種の水素吸蔵合金は、金属元素組成と結晶構造で5種類に分類されている。(詳しくはここから)
この中では水素吸蔵能力の高さと運用条件の面で、ABおよびAB型合金の2つのグループが最も優れている。

吸蔵合金の一般的な利点と欠点は以下の通り。
<利点>
・水素を取り出し易い。
・貯蔵容量が大きい
・吸蔵物の運搬や運用も容易
<欠点>
・水素による脆化が大きく合金の耐久性が低い。
・製造コストが高い

吸蔵合金方式は水素による脆化の問題が解決されれば飛躍的な発展が期待される。

2-2.水素貯蔵プラスチック

昨年9月、早稲田大学の西出教授、小柳津教授らは「水素運搬プラスチック」を開発したと発表した。ケトンポリマーを常温で水に浸しマイナス1.5ボルトの電圧を掛けると水から水素イオンが取り込まれ水素が固定されたアルコールポリマーが生成されることを発見した。こうして水素がケトンポリマーに固定される。
更にこのアルコールポリマーは80度に加温すると、固定した水素ガスを放出することも分かった。さらに水素の固定と放出のサイクルは温和な条件下で簡易に行え、その繰り返しも可能であることを確認された。

軽量かつ加工も容易で、水素をためた状態でも手で触れられる特徴があり
身近な場所(家庭内)での水素貯蔵を可能にする新材料として期待出来る。

詳しくはこちらをご参照。

2-3.新規水素結合物質の誕生

東北大学の高木准教授と折茂教授らの研究グループは、「1 つの金属原子に 9 つもの水素が結合した 新たな物質群」の合成に成功した。

金属の中には2-1で例示したように水素と容易に結合出来る金属がある一方、単独では水素と結合しにくい元素群(=ハイドライド・ギャップ)が存在する。しかしこれらの元素も錯体水素化物とすることで多くの水素と結合することができる。
ただし、クロム(Cr)とその仲間であるモリブデン(Mo)、タングステン(W)、及びニオブ(Nb)、タンタル(Ta)は水素との結合はできなかったが昨年クロムと水素(7個)との結合に成功した。

更に今年これら4種の金属を9個の水素と結合させることに成功した。
この成果で、ほとんどの金属原子と水素とを結合させる技術が確立した。
水素を高密度に含む物質群は、水素貯蔵材料の外、高速イオン伝導材料、超伝導材料としての応用が 期待され、今回の成果で、基礎・応用の両方について今後の進展が大いに注目される。
詳しくはここからどうぞ。(プレス発表)

 

 

 

尚、上記1.と3.については既に言及しているので今回は省略しますが、
詳しくは次のサイトをご参照。
1.水素貯蔵タンクに関して

3..水素を分子内に貯蔵する方法

参照ブログ:水素の常温、大量輸送方法

水素の貯蔵に関しての一般的な解説はここからどうぞ

 

 

 

 

 

 

 

 

 

次世代自動車用バイオ樹脂の研究がすすむ

今自動車の軽量化を目的に新素材の研究が進んでいる。

車体用途では強度的に強く、軽いのはジェット機にも使われている炭素繊維だろう。
高級車には一部使われ始められたが価格が高く一般車への普及は大分先になりそうだ。

プラスチック素材なら軽くていいのだが、これまでは強度が不十分で塩ビのバンパーやアクリルのインパネなど一部に使用されてきただけであった。樹脂バンパーは壊れてもいいという前提なので使われている。しかし窓はそうはいかない。

窓は透明性が必須なのだが、アクリルやその他透明な樹脂では強度が足りない。
ポリカ―ボネイトは警察が使う盾になっているほど十分な強度はあるのだが、傷が付き易さを克服できていなかった。(表面硬化はあるが不十分)

これらの動きと平行に、非石油由来のプラスチック樹脂が二酸化炭素(CO2)などの温室効果ガス削減に役立つ新素材(バイオプラスチック)として注目を集めている。

新素材はこれまでの欠点だった熱に弱い性質を克服し金属やガラス等に代わりになる可能性を秘めている。

環境省も新素材を将来的に次世代自動車の部品の部品などに使う事を目指し技術面から地球温暖化防止対策を進めようとしている。

先ずは先行の製紙会社で研究がすすむ新素材セルロースナノファイバー(CNF)だ。
これにはこれまでにも当ブログに書いてきたので詳細は割愛します。(下のリンクご参照)

CNFは耐熱温度が最高約280℃のため、自動車のエンジン回りには使えない。

そこで注目されているのが本題の新素材だ。

1.バイオポリイミド
イミドと聞いただけですぐははーと思った人もいるでしょう。
北陸先端科学技術大学院大学の金子教授らは、植物から得られるブドウ糖を遺伝子操作した大腸菌によってアミノ桂皮酸に変化させた後、紫外線を当てて分子構造を変えて
熱に強いポリアミド樹脂を合成した。
耐熱性は400℃あり、エンジン回り部品への使用を第一とし、透明なので窓ガラスやライトカバーへの使用も想定されている。

2.リグノフェノール
 リグニンは良く知られているように、木材の繊維を束ねる接着剤の役割を果たしている物質だが、リグノフェノールはこのリグニンから抽出した粉状の素材で、他の樹脂と混ぜる事で軽くても丈夫で加工し易い素材になる。
高い断熱性があり燃えにくいため、車のボンネット裏の遮熱材や配線が通るコネクターなど、熱が生じやすいところに使える。金属部品に比べて15~50%重量を低減させることができると期待されている。(島根県の建設会社で開発が進む)
環境省は、上記の研究について、昨年から実証実験を始め、生産コスト削減や安定した供給方法を探っている。

目標は、先行して研究が進む木や竹由来のCNFと組み合わせることで、車体重量を10%削減した次世代自動車の実現だ。

(一部用語間違いがありましたので修正いたしました。遅くなりました。お詫び申し上げます。)

 

夢のある超伝導の話

超伝導とはある種の金属・合金・酸化物を零下269℃以下の極超低温に冷やすと電気抵抗がゼロになる現象。(超電導とも書く)

超伝導状態のコイルに一度電流を流すと半永久的に流れ続けるので超伝導コイルを使えば強力な磁石が作れ、以下の応用が考えられている。

・リニアモーターカーへの応用(2027年に開業)
・医療機器への応用(MRIの小型化、新装置・新医療)
・線材として送電線に使用(現在5%の送電ロス低減)
・電力貯蔵の他、発電機、変圧器等
・微小磁気センサー、超高速演算素子等

以上の様に非常に夢のある技術で、産業界は勿論、人間の生活も大きく変える可能性を秘めた技術だ。
1987年までは冷却剤は高価な希少資源である液体ヘリウム(零下269℃、絶対温度4K)Kはケルビン)まで冷やす実験しかできなかったが、1987年の銅酸化物系の超伝導物質が発見されてから安価な液体窒素(零下196℃、77K)が使えるようになり、研究も、新素材開発も大きく進んだ。

 

とりあえず今回は超伝導の発見と開発の歴史について復習しておこう。

<超伝導の歴史の大きな流れ>
超電導現象の研究は1911年オランダで水銀の電気抵抗がなくなることの発見から始まった。そして各種新材料の発見、1962年日本でのリニア新幹線計画、そして2008年磁気素材である鉄系合金の発見、2012年、送電実験の開始、2016年超伝導理論に対しノーベル物理学賞が送られた。

 

<超電導研究史概要>(新聞、インターネットサイト、その他より調査引用)
1911年、オランダの物理学者オンネス水銀の電気抵抗が4.2K(-268.8度)以下で
消失することを発見
1933年、超電導材料に特有の磁力線を排除するマイスナー効果発見
1953年、実用的な合金系のニオブ・ズズ合金発見(約20°K)(抵抗消失温度、以下同じ)
1957年、超電導現象を説明するBCS理論発表
1962年、微弱な磁場検出に使えるジョセフソン効果発見
1970後半、MRI(核磁気共鳴画像装置)(液体ヘリウム使用)の開発、病院への設置
1986年、米IBM・チューリッヒ研で最初の銅酸化物系高温超電導材料発見(約30K
1987年、米ヒューストン大等イットリウム系超電導材発見(零下196度、77K
1988年、金属材料技術研究所(当時)ビスマス系超電導材発見
2005年、IHI等船舶用モーター試作、
JR東海、ビスマス系で超電導用リニア用磁石開発(時速500km以上での
走行試験成功)
2006年、住友電工、米プロジェクトでビスマス系送電実験成功
2008年、東工大、細野教授鉄系の新超電導材発表零下218度、55度k
2011年、超電導現象発見100周年。国内外でセレモニー開催。
2012年、東京電力と住友電気工業、前川製作所は、高温超電導ケーブルを
実際の系統電力に接続して送電する実証試験を実施

2016年、米国のサウレス名誉教授とコスタリッツ教授は1970年代にトポロジーの概念
使い、物質の超電導が低温で起こり、高温では消滅することを理論的に説明
たことでノーベル物理学賞受賞

尚2027年開業予定のリニア新幹線については別途単独記載予定。

<付記>
1.高温超伝導と常温超伝導について
通常の概念では「高温」は「常温」より高い。
しかしこと超電導の世界では、常温はそのまま日常の生活温度と考えればいいが、
高温超伝導はマイナス230℃(43K)以上で電気抵抗がゼロになる材料を指すと
言われているがなぜか明確ではない。

したがって簡単に考えれば液体窒素「マイナス169℃(77°K)以上で超伝導現象が
生じる物質を指すと覚えておけばいいのでは無いかと思う。
今のところ銅酸化物系化合物がトップランナーだ。

一方常温超伝導は全科学者の夢ではあるがまだ実現していない。
世界の研究者が必死で探している状態だ。

常温超伝導が実現すれば、送電線への応用が最初だろうが、自動車への応用が大き用途だろう。

この様に夢のある超電導についてこれからニュースの都度取り上げて行きたい。

 

 

 

 

 

 

 

伝統工芸の技でつくるユニークなIoT機器

 

あらゆるモノがネットにつながる「IoT」の普及を見すえ、ユニークな機器の開発が進んでいる。

 

昨年、大ヒットした映画『君の名は』で主人公が身につけていたことで一躍注目されている日本の伝統工芸「組紐」が、脈拍や咳などを識別できる生体センサーとして、実用化されることになった。

 

 組紐は、細い絹糸や綿糸を編んで織り上げて作り、和装の帯締めや武具や刀剣の飾りに使われている工芸品。

その組紐を特別の機能を持つハイテク繊維で作れば応用の一つとしてセンサーが出来る。

 

関西大学システム理工学部の田實佳郎教授と帝人は、ポリ乳酸繊維を使用した圧電体に日本の伝統工芸である「組紐」の技術を用いたウェアラブルセンサー「圧電組紐」を開発した。

 

圧電体は、圧力を加えると電気エネルギーを発生し、逆に電気エネルギーを加えると伸縮する特性を有する物質の総称。

 

その特性を利用し、スイッチなどのセンサーやスピーカーなどのアクチュエーター(駆動体)として使用されている。

 

単に圧電繊維だけではどんな動きでも電気信号が発生し、何の信号かわからない。

研究チームは、紐の編み方や結び方を変えると、捉えたい動きを表す電気信号が強まるのに気づきいた。そしてコンピューターによるシミュレーションで電気信号の変化を繰り返し計算し不要な信号を相殺する組紐の条件を突き止めた。

チョーカーと呼ぶ組紐に加工すると首に掛けるだけで、食べ物を飲み込む動きを咳払いまで捉えた。更にスポーツウエアに組紐を縫い付けると全身の動きが分かる。

将来的には検出した信号をスマホで病院に送れば医者が見て遠隔診断も出来る。

今後の進歩が注目される。

 

 [ad#gad0214]

次世代電池としてのカリウムイオン電池

現在2次電池としてリチウムイオン電池が全盛ではあるが、課題もいろいろあり、
リチウムイオン電池を超える電池が要望されている。
その一つにナトリウムイオン電池があり、次世代の電池として期待され研究開発がなされている。
更に同じアルカリ金属のカリウムイオン電池もあるが、これまで正極に適した材料(化合物)が少なく開発は進んでいなかった。

今度、東京理科大学の駒場慎一教授はプルシアンブルーを使った正極を開発し、
既に開発していた黒鉛の負極やカリウムイオンを溶解する純度の高い電解液を組み合わせてカリウムイオン電池を実現した。

今回開発されたカリウムイオン電池の性能
●負極の素材は黒鉛、正極の素材:鉄系のプルシアンブルー
●正極の容量:1g当たり141mAh,負極は250mAh
●電圧:4ボルト
●電池のエネルギー密度;1kg当たり200wh
●充放電回数:400回迄負極の性能低下なし。
等リチウムイオン電池に比べて性能的には見劣りしない。

<カリウムイオン電池のメリット>
◯カリウムはリチウムに比べて入手し易い。(金属としてだけの比較)
◯リチウムイオン電池に比べより安全性が高い。
カリウムイオンはリチウムイオン電池に比べ発火しにくく安全性が高い。
(リチウムイオン電池は一定の電圧以下になると金属が樹状に結晶化してショートし
発火する危険性がある。カリウムは電位的に2倍の余裕があり
また融解温度がリチウムより低いこともそれだけ発火のリスクが低い。)
◯リチウムイオン電池やナトリウムイオン電池に比べ負極の電位を下げれるため
電圧をより高く出来る。
◯カリウムイオンはリチウムイオンに比べ動き易いので電池にすると大電流を流しやすく、
充放電の速度はリチウムイオン電池の10倍以上になる。
◯電極材料のコストが低コスト
今回、青鉛筆の芯にも使われる安い材料であるルプルシアンブルーを使用する正極を
作成した。因みにリチウムイオン電池はコバルトなど高価な材料が使われており、
電池の製造コストに占める割合は4割もあるとされる。

カリウムイオン電池のデメリット>
●イオンが大きいのでリチウムイオン電池の様に小型軽量化は難しい。
このため風力発電用など据え置き型の蓄電池用が期待される。
●リチウム電池と比べ同じ容量ではより重くなる

<今後の予定>
リチウムイオン電池で実績のある昭和電工と協力して長期間の使用が求められる据え置き型電池を目指すそうだ。

今回の東京理科大の開発で、これまで殆ど手が付けられていなかったカリウムイオン電池の開発に乗り出す研究者や企業も増えそうだ。

<これまでのカリウムイオン電池の開発>
米国(2012年)
同教授(2015.11)

上記内容は日経産業新聞2017.2.9他を参照し記述した。

<所感>
リチウムイオン電池が既に広く普及しているだけに、カリウムイオン電池が受け入れられるためには、先ずはリチウムイオン電池の欠点を補う部分での使用に特化した棲み分けが出来る製品を開発し普及させていく戦略が有効と考えられる。

<関連サイト>
マグネシウムイオン電池
3倍
パワーリチウムイオン電池

 

 

 

 

 

 

 

 

ナノチューブを使う4倍容量の蓄電器の開発

ナノカーボンの定義は学術的には『ナノメータのレベルで精緻に微視的構造や組織・形態が制御,設計され,それによって従来には ない高度な性能が付与され,あるいは革新的な機能を発現 する炭素体』と難しいが、要は炭素原子だけの結合でナノレベルの物質である。

炭素原子60個の球形の「フラーレン」、蜂の巣形状のシート「グラフェン」、グラフェンが筒状になったとも言える「カーボンナノチューブ(CNT)」がよく一般に知られている。
発見の歴史はフラーレンカーボンナノチューブ(CNT)、グラフェンの順なのだが、フラーレン(1996年)とグラフェン(2010年)はノーベル賞を既に受賞しているのに、日本人の発見になるCNTは何故かまだ受賞していない。

したがって日本人として、CNT関連ニュースは非常に気になるところであり、今後CNTを主体にナノカーボンについて紹介してゆきたい。

今回は先日(2/9)の日経産業新聞(今後NSと略記)に蓄電器(キャバシシタ)への応用記事をご紹介。

キャパシタとは「正極と負極で挟む電解質の中をイオンが往来し両極の表面で生徒ふの電気が引き合った電気2重層で電気を貯める蓄電池の一種」。
電極の表面積が広い程容量が増える。今回は表面積を広くするためにCNTを用いたということだ。しかしその製造方法が私にはなかなか興味深かった。

ナノチューブは固まりやすい欠点があるので、これをほぐすのに、これまで紹介してきた新素材セルロースナノファイバー(CNF)を使うことを考えたそうだ。有機溶媒のなかでCNTとCNFを混ぜると、CNFがCNTに巻き付くことがわかったそうだ。

具体的な数値と巻付きのイメージは、直径10nm(ナノメートル)長さ10μm(マイクロメートル)(すなわち直径対長さ比L/D1000倍)、(イメージ的には太さ1mm、長さ1mの糸)のCNTに、直径3nm、長さ5μmのCNF(イメージ的には太さ0.3mm、長さ50cmの紐)が巻き付くイメージ。

有機溶剤の詳細は不明だが、この溶剤にポリアクリロニトリル(PAN)を加えるとCNFの水酸基(-OH)と、PANがもつ水素が引き有いナノチューブが均質に分散する。これを窒素を含む高温ガス中で熱処理すると多孔質の炭素構造体の中にCNTが分散した状態の電極材が出来た。電気2重層が安定するには窒素を9%残すことが必要だそうだ。

表面積が広い炭素材としては活性炭が有り、中でもヤシガラ活性炭は最もグラム当たりの表面積が広いことが知られているが今回開発した電極剤は同体積でその4倍だったという。

従来キャパシタは充放電時間は通常の蓄電池に比べ圧倒的に速いものの、蓄電能力は劣るので用途により使い分けられてきた。しかし今回開発品は容量もリチウムイオン電池の10数%まで近づいてきており、5年以内に50%超に引き上げる計画だそうだ。

リチウムイオン電池と併用することで、キャパシターで急速充電し、その電気で稼働しながら「自動車なら走り出してから)電池を充電するという使い方が出来る。

尚本研究は、京都大学坂田教授、ナノチューブの製造販売を手がけるナノサミット、米MIT、らによるもの。

ナノカーボン

活性炭

*)キャパシタ キャパシタとは、
1879年にドイツの学者ヘルムホルツ(Helmholtz)によって発見された「電気二重層」現象の原理が応用された蓄電池のことである。 電気を電気のまま(エネルギーの化学反応なしに)充放電することが可能で、原理的には半永久的に使用することができる、理想的な蓄電装置と言われている。

 

活性酸素の発生量が2倍になる酸化チタン製造法

酸化チタンが光触媒の機能を有することが一般に知られているようになりその応用製品がいろいろなところで使われている。

その光触媒作用とは、光によって酸化チタンの表面に発生する活性酸素が有機物を分解する反応を起こし有害物質や汚れなどの除去に利用できることを言う。

酸化チタンの結晶の構造や大きさによって活性酸素の発生量は異なるがその量が多ければ反応速度が上がり優れた浄化機能位を発揮する可能性があると言われている。

酸化チタン(TiO2)は粉末として試薬で入手出来る。しかし光触媒としての酸化チタンは一般にチタンのイオンをアルコールに溶かした市販の「チタンアルコキシド」(液体)を原料にして作る。この液体を更にアルコールで薄め水を加えると酸化チタンが析出する。

この酸化チタンを分離、乾燥、焼成、粉砕のこうていを経て光触媒にする。

酸化チタン光を当てた時に表面に発生する活性酸素濃度は電子スピン共鳴装置(ESR)で調べる。

山形大は酸化チタン作成工程で水を加える前にアルカリ金属のイオンを添加することで従来の2倍の活性酸素が発生する酸化チタンを作ることを発見した。粉末の他薄膜も作れるという。

酸化チタンによる光分解性の試験は色素の一種であるチレンブルーを使って調べ、新手法で作った酸化チタンの分解性が優れていることが確認された。

今後は活性酸素の発生の仕組みを解明し、耐久性(効果の持続性)を検証する。

また実用化に向け複数の企業と協議を進めている。