発火の心配ない次世代リチウム電池

現在リチウムイオン電池は、スマートフォンやパソコン、電気自動車などに使われ最も普及している2次電池だ。しかもこれから更に自動車用、蓄電用に大きく伸びようとしている。
しかし、最大の問題は発火の恐れがあることだ。

リチウムイオン電池の構成は正極、負極、電解質、セパレーターだが、
この電解質が現在は有機物を使用しているため(リチウムを使うため水系溶液は使えない)、発火の可能性があるということだ。これまで発火事故が各地で生じた。

その後構造面、システム面が改良はされたようだが有機物電解質を使う限りに置いては危険性を抱えたままだ。

かと言ってリチウムイオン電池に取って代わる電池はすぐにはなく、当面は更なる高性能化のために、正極、負極等部材の研究も行ないながら、発火防止の研究が進められてきた。

今回東京工業大学の菅野了次教授は次世代の電池と言われる電解質が固体の『全固体電池』を開発し、注目が集まっている。

全固体電池は発火の危険性が極めて低く、またこれまでの電池よりも容量を大きく増やせる可能性もある。
実は菅野教授は6年前に全固体電池の開発に成功している。
固体は液体よりイオンが流れにくく、電流を取り出しにくいことが課題だったが、2011年、電解液に匹敵する性能の固体の電池材料を作ることに成功した。
ただ、高価なレアメタルであるゲルマニウムを使っていたため、コスト面に問題があった。

今回はスズ(錫)ケイ素といった安価な材料を組み合わせ、室温下電解液並の性能を持つ材料を作ることに成功した。
安価な材料を使用することで、コストが大幅(3分の1以下)に下がる見通しだ。

以上がニュースの概要だが、しかし実用化が10年後というのは一寸遅すぎでは。
開発したと大々的に公表したからにはすぐ少なくとも数年後に実用化しないと
どこかの国に追い抜かれそうで心配だ。

TV朝日NEWS

 

再生エネを空気に貯める、空圧電池の実証実験

電力を貯蔵することについては、
少量では昔からアルカリ乾電池など各種乾電池や、最近ではリチウムイオン電池、
新しいところではナトリウム硫黄電池などがあり、
中容量電池として鉛蓄電池や、リチウムイオン電池、酸化還元反応を活用するレドックスフロー電池も開発されつつある。

一方大量の電気を化学物質等を使わず安全に貯める方法としては、これまで揚水発電が用いられてきたが、最近これまでの方法とは全く異なる方式が注目され実証実験が行われている。

それは「空圧電池」とよばれ、圧縮空気を利用し大量の電気を貯める方法で、原理としては極めて簡単ではある。
すなわち余剰電気として送られてきた電気で圧縮機を動かし大きなタンクに空気を押し込み溜めておく。電気が必要な時はこの圧縮空気を放銃し発電機を回し電力を得る。

今回実証実験を行ったのは、エネルギー工学研究所NEDO早稲田大学らが
神戸製鋼所の装置を使って静岡県伊豆の河津町で実施した。

空気は10気圧でタンクに押し込まれた。装置の貯蔵能力は1千キロワット。圧縮機を動かす電力は近隣の風力発電所から送った。
2018年度末迄実験を続けて性能を評価する。


空圧電池実証実験装置(下記参照サイトより)

尚空気を圧縮し貯蔵する時は空気の温度が上がり、発電する時は膨張のため温度が下がるので、温熱や冷気として回収出来る。
これは断熱圧縮断熱膨張という原理で、色々な機器に応用されている。
(断熱圧縮は、自転車の空気を入れた時空気ポンプの下が熱くなっていることで実感出来ますね)
この技術の特徴は、媒体として空気しか使わないので、安全性が高く、寿命も長い。

空気を使う電力貯蔵技術を他の方式と比較した概要を下表に示す。

<電気を貯蔵する技術の主な性能比較>
圧縮空気
エネルギー
貯蔵
リチウム
イオン
電池
鉛蓄
電池
NAS
電池
レドックス
フロー
電池
充放電
効率
55~
70%
85~
95%
75~
85%
75% 70%
コスト
耐用年数 20年以上 6~10年 15年 15年 15年
安全性
設置面積
(日経新聞(2017.7.2)より転記)

再生エネルギーの普及につながるこれら電力貯蔵技術は今後とも開発競争が激化しながら技術向上が図られ、適材適所で使われる様になってゆくと考えられる。

安全性、原理の単純性、耐用年数などからこの「空圧電池」の今後の発展が期待される。

<参考サイト>
圧縮空気エネルギー貯蔵(CAES)システムの実証試験を開始