開発進む次世代電池

現在リチウムイオン電池が全盛ではあるが、いくつかの問題や課題(火災の危険性、充電時間が短い、容量が小さい、資源問題等)があり、これらを乗り越える次世代電池の開発競争が激しくなっている。
以下その概要は以下の通り。

電池の種類 特徴 用 途 現在の課題 実用化の目標
全個体電池(硫化物型) 急速充電が可能  

電気自動車(EV)

空気に触れるとガスが生じる 2020年代前半
(トヨタは過去22年としたが)
全個体電池(酸化物型) 安全で扱い易い イオンの動きが遅い(10分の1) 2030年代
(小型はTDK等で先行試生産中)
ナトリウムイオン電池 資源が豊富
安価で高い出力
定置型大型蓄電池

(風力発電用)
(太陽光発電用)

電池が重い
(EVには不向き)
数年後
リチウム硫黄電池 安価で高容量 耐久性
(硫黄が溶け出し劣化し易い)
2030年以降
リチウム空気電池 小型で軽量 ドローン
ウエアラブル端末
水分に弱い
寿命が短い
2025年

1.全個体電池
2011年東工大菅野教授が既存の液体電解質の性能を上回る固体電解質を発見してからその後急速に研究が進展した。ただし硫化物系のため、空気に触れるとガスが生じる等の問題がある。これを解決できる酸化物系の開発が進んでいるがイオンの動きが遅い等の問題があり実用化は硫化物系よりだいぶ先になるとみられている。
電気自動車(EV)用途に、トヨタやパナソニックが開発中。
しかし非自動用としてセンサーやウエアラブル端末には、酸化物系の小型製品が既にTDKやFDKで試生産されている。

全個体電池に関しては別途また取り上げたい。

2.ナトリウムイオン電池
ナトリウムイオン電池の最大の魅力は安さだ。資源は普遍的に存在し枯渇の心配はない。また電極はリチウムがコバルト等の高価な金属を使用するのに対し、安い鉄などが使える。課題は電池が重くEVに乗せると後続距離を伸ばし難いこと。
したがって移動用ではなく自然エネルギーで作った電気を蓄える定置型の大型電池が有力。実用化も数年後と見られている。

3.リチウム硫黄電池
安価な硫黄を使うリチウム硫黄電池も自動車用は不向きで、ナトリウムイオン電池と同様定置型が適している。コストは4分の1になるとされるが、電極の硫黄が溶け出しやすいなど耐久性が問題。

4.リチウム空気電池
一時電池としては既に販売されているが、二次電池として現在開発中。
小型電池として有望。空気中の酸素で充放電する。ドローンやウエアラブル端末等の用途が期待されている。18年4月ソフトバンクとNIMS(物材機構)が25年の実用化を目指し共同研究を始めた。

最後に
現在全盛の液体電解質を用いたリチウムイオン電池の後継として全個体電池を始めとして
各種の電池が研究・開発されているが、現行電池の改良も進んでいるため、中型以上の電池については、完全に置き換わり得る電池が出てくるかまだ予断を許さない。
現在全個体電池が最も注目されているが、IOT時代を見据え、既に大量の超小型品が生産されている現状を見ると、まず超小型全個体電池が最も早く生産拡大・普及していくのでは無いだろうか。

 

次世代電池サイト
その1.(NEDO)
その2.(JAIMA)
その3.(JST)
その4.(日経XTEX)

 

 

 

リチウムイオン電池を大幅に超えるリチウム空気電池、ソフトバンクも参入

現在繰り返し使えるバッテリー(二次電池)はリチウムイオン電池が主流を占めているが、
電解質に有機性の液体を使用していることから発火や爆発等の安全性の問題があり、
さらにエコカーへの車載用電池としては蓄電容量(走行距離)や、耐久性(繰り返し充放電回数)が不十分とされ、更に高性能な電池が期待されている。

この期待に応じられるバッテリーとして、現在電解質に無機系個体電解質を使用する全個体電池の開発が、2022年頃の実用化を目指してトヨタ自動車を先頭に各社で進められている。これらの件についてはこれまでのブログで述べてきた。
(最新情報としては、非車載用の小型電池ではTDKが今年6月から生産予定とのこと)

一方、この全固体リチウムイオン電池は正極に希少資源のコバルトを使うという点や容量密度(走行距離)がまだ不十分のため、更にこれらの問題点を解決し、課題に対応し得る可能性のある電池として理論エネルギー密度が現行のリチウムイオン電池の5-10倍のリチウム-空気電池がある。(図の金属ー空気電池の領域)


このリチウム-空気電池は負極にリチウム金属を用い、正極に空気中の酸素を利用するもので、「究極の二次電池」とも言われ、現在世界的に研究開発が進められている。

物質・材料研究機構(NIMS)で開発されたリチウム空気二次電池の原理模式図


正極の空気(酸素)極、セパレータ―、負極のリチウム金属からなるシンプルな構造となっている。
この電池はコバルト等の希少資源を使う必要がなく、負極物質は空気を原料とするもので現行のリチウムイオン電池に比べて大幅な軽量化とコストダウンが期待されている。

リチウム空気電池の基本反応
放電(電気の取り出し)では、負極のリチウム金属からリチウムが溶けだし、リチウムがプラスイオンとなり、その時放出される電子が電流として外部回路に流れ仕事をする。
リチウムイオン(Li)の方はセパレータ―を通り、正極(多孔性カーボン)に達し空気中の酸素(O)と反応して過酸化リチウム(Li)となり正極の多孔性カーボン上に析出する。
充電は、外部からの電気エネルギーにより放電の逆つまり正極に蓄積した過酸化リチウムをリチウムイオンと酸素に分解し、陰極にリチウム金属にして戻す反応。

期待されるこのリチウム空気電池には以下の課題があった。
1)理論大容量の実現、
2)低いエネルギー効率と、短寿命

これらの課題に対して、NIMSは下の取り組みを行い大幅に改善した。
1)大容量の実現
正極のカーボンに不織布状のCNT(カーボンナノチューブ)シートの採用により達成。
これはCNT不織布の大きな表面積と柔軟な構造の寄与により、酸素の通りがよく、放電反応による過酸化リチウムが表面に析出してもCNTが変形し析出反応が制限されなくなった為と考えられている。また充電により元の形状に戻るため繰り返し回数の増加に寄与している。下図がその様子を示している。

2)低いエネルギー効率と短寿命
低いエネルギー効率の原因は、過酸化リチウムの分解が起こりにくいため充電電圧(過酸化リチウムの分解電圧)が放電電圧より高くなることによる。
また短寿命の原因は、充電時過酸化リチウムが分解されリチウム金属として負極に析出する際に、デンドライト状(樹枝状)になり、リチウム金属を劣化させると共に短絡を生じる。

この問題に対し、2017年7月31日、物質・材料研究機構(NIMS)の研究チームは同電池のエネルギー効率と寿命を大幅に改善する新たな電解液を開発したと発表した。

新しく開発された電解液は、臭化リチウム(Li)と硝酸リチウム(LNO)を含む混合電解これによって、充電電圧が3.5Vに、エネルギー効率の値77%まで大幅に向上した。
また、寿命低下の一因とされていたリチウム金属の樹枝状物質(デンドライト)の析出も防止することで、従来20回以下であった充放電サイクルを50回以上(現在はもっと大きな数字となっていると思われる)まで向上させた。

下の画像で概況を知り、正確には参考サイト2をご参照ください。


 

 

 

 

 

 

今年2018年4月11日ソフトバンク物質・材料研究機構(NIMS)は、今後のIoT時代に向けての各種デバイスやあらゆる産業に必要となる高性能電池の開発を目指し、先端技術開発センターを設置リチウム空気電池を共同で開発に着手すると発表した。(参考サイト3,4

これまでも数々の投資を行って成功させてきたソフトバンクが参入することで、リチウム空気電池の開発が一気に進む可能性もある。

一方トヨタ自動車は、車載用として全個体リチウムイオン電池を2020初頭に開発するとされていたが、リチウム空気電池も開発しており、その圧倒的容量の大きさ(走行距離)から今後の進展次第では車載用電池の実現が意外に早く来るかもしれない。

全個体電池、他の金属も含めてリチウム空気電池の今後の進展に注目していきたい。

 

<参考サイト>
1.(CNT不織布の正極)
  容量はリチウムイオン電池の15倍、超高容量の「空気電池」を開発 
2.(新電解液)
  リチウム空気電池のエネルギー効率と寿命を大幅に改善する電解液を開発
3.(SBNIMS)①
  究極の“リチウム空気電池”、ソフトバンクとNIMSが共同開発へ
4.(SBNIMS)②
   リチウム空気電池! ソフトバンクと物質・材料研究機構NIMSが共同開発に着手