身の回りにある微弱エネルギーで発電しIoTを回す

私達の身の回りには光、風、熱、振動、圧力、磁力などの微弱なエネルギーが溢れている。これらの身の回りの微弱エネルギーで電気を起こすことを一般に環境発電と呼んでいたが
最近ではエネルギーハーベスティング(微弱エネルギーの収穫)と呼ばれているようだ。
光と風とについては、ご存知の様に大規模な発電装置もでき一般電力としての利用も高まってきた。しかしその他は大きな電力を取り出す装置化に至らず十分活用されていない状態であった。

一方近年あらゆるものがネットに繋がるIoTが広がり、センサーや送信技術の発達と共にこの信号を送信するための分散電源の必要性が高まってきた。この電池はそれほど大きな容量はいらないが、一つ一つのIoT機器に必要なため、交換等の手間がかからない二次電池と発電機器が必要だ。其の発電機器として微弱な光や風、熱、振動、圧力、磁力等による発電装置が盛んに開発されるようになった。

其の具体例を幾つかご紹介したい。

1.温度差を利用する例

例1.マンホールのフタの裏に下水道の水位や温度、位置情報を測るセンサーを仕込んでセンサーで各データをとり、通信機器で其のデータをクラウドに送る。その電気は昼間太陽熱で照らされ熱くなったフタと底を流れる下水との温度差で熱電変換素子が熱を電気に変えることで得えられる。通常の電池では交換日管理や交換に手間や費用が掛かるが、温度差発電でそのコスト低減を図る。(後記の2サイトご参照)

クラウドwatchより

例2.コマツ子会社のKELKの装置は、工場機器の稼働熱と外気との温度差で発電し、温度や振動等のデータをクラウドに送信し、工場の機械の管理と実施する。その素子は2~3℃の温度差があれば100μwの電気を作り出せる。また超小型化を図り、ボルトの中に組み込んで使うタイプも開発が進んでいる。

2.微弱な光で発電する例

日陰や室内の僅かな明かりでも発電する「色素増感太陽電池」を使ったセンサーが開発されている。一般的な太陽電池は数万から数十万ルクスの光を必要とするが、フジクラの太陽電池は室内証明程度の300ルクスで24時間センサーを動かせる。フジクラが手がけるのは気温や湿度、人感など5つのセンサーを組み込んだユニット。光合成する植物の様に光を浴びた色素が電気を帯び電解液を通じて電極に電気を運ぶ。既に橋梁の橋桁等に設置され建て替え時期の見極めに使われてている。

3.磁力を使って発電する例

電源ケーブルが発している磁界をコイルで受け発電する超小型装置。現在普通の電流計はこの原理で発生した電気を測定しているが、大型過ぎ自動送信しない。
これを、工場などの設備の電源ケーブルにクリップの様な形状のセンサーを着けるだけで電流量を測定し、更に自動でデータをクラウドに送信することで設備一つ一つの消費電力を一箇所で管理出来る。

4.圧力を感じて発電する例

私案で恐縮だが、私が常々考えているのは、階段での発電だ。大きな駅では毎日何万人もの人が階段を利用する。床では人の足による圧力は体重程度しか無いが階段では登りも下りも勢いが付いているので体重以上の圧力がかかっている。これを利用しない手はないのではないか。もう一つは、車道の交差点やETCのゲート等一旦車が停車するところは圧力が得られるのではないでしょうか。今のところこれらの圧力発電の情報を十分集めてないので今後ウオッチして起きたいとおもいます。

と脱線しましたが、この原理を利用した例が東京都心の地下街に設置されている。
シャッターの降下時に人が挟まれると座板が押され内臓のバネが伸縮し、この動きで発電し無線でシャッターを止める信号を送るシステムだそうだ。

 

<参考サイト>
1.マンホールへの設置関蓮
◯環境から「収穫」した電力で自立するデバイス
富士通、マンホール蓋をセンサーノード化、ゲリラ豪雨対策の下水道氾濫検知ソリューション販売開始

 

 

その他面白そうなテーマとして、
公共の電波を電力に変える研究が進んでいる。

参考サイト:「環境電波の電力変換技術」って何だ?

本件で新しい情報を入手したらご紹介したい。

 

 

電気自動車EV用リチウム資源の現状

パソコンやスマホ等携帯電子機器等の電池はこれまでリチウムイオン電池が使われてきた。リチウムは全量輸入しているのだが資源問題はそれほど大きくは取り上げられなかった様に思う。
しかし、エコカーとしてのHVやPHV、特にEVには大量のリチウムイオン電池が必要なため、その主要原料であるリチウムが逼迫すると考えられてはきた。
以前からリチウムを使わない電池も研究・開発され始めてはいるが、すぐにリチウムに置き換わる電池はなく、当分の間はリチウムイオン電池が主流と考えられている。

リチウム資源獲得競争が始まったのは中国の自動車政策が原因だ。
中国は19年から自動車メーカーに一定比率のNEVの製造販売を義務付ける規則を導入すると発表した。
世界最大の自動車生産国となった中国が電気自動車EVへの転換を目指す方針を打出したため、電池の主要原料であるリチウム価格が高騰し、世界的なリチウム争奪戦が始まった。
中国は自国にリチウム資源を持つが、中国企業は今後の需要増を見越して現在世界の半分を生産するチリやアルゼンチンやアフリの鉱山を買収し、更に豪州の鉱山開発にも資本参加している。

日本もリチウムの安定確保の為、JOGMEC(日本の独立行政法人、石油天然ガス・金属鉱物資源機構)と住友商事等がウユニ湖でのリチウム開発をボリビア政府と締結した。
ウユニ塩湖リチウム資源産業化に向けた協力覚書を締結」

世界のリチウムの生産量、推定埋蔵量(日経新聞より)

(埋蔵量については、ウユニ塩湖を有するボリビアやブラジル、ロシアやカナダ等があり今後のUSGSのデータに注意する必要がある。)


オーストラリアが埋蔵量の割合に比べ生産量の割合が大きいのは、生産方式の違いに依る。チリなど南米では塩湖に含まれるリチウムを天日干しにして採取する手法で時間がかかる一方、オーストラリアでは鉱石から精製する仕組みのため南米の手法よりも効率がよいためだ。
南米のリチウムはいずれも塩湖から採取している。
チリはアタカマ塩湖。ボリビアはウユニ塩湖、アルゼンチンはリンコン塩湖がある。

(朝日新聞より)

最近ウユニ塩湖は観光で脚光を浴びているが、リチウムの生産でも今最も注目されている。

以下リチウム資源関連サイトを付記します。ご参考まで。
EV電池は塩湖生まれ

平成23年度資源案件に係わる民活インフラ案件形成等調査 ボリビア・ウユニ地域リチウム生産 副原料供給インフラ等調査 報告書

南米リチウム争奪戦 塩湖の底に世界の8割

 

尚最後に、現在は全量輸入に頼っている日本ですが、明るい未来を感じさせる記事がありますのでご紹介します。(本件についてはまた関連事項も含め後日また取り上げましょう)
JAEA、海水からリチウムを抽出する技術を開発

 

 

 

 

 

 

 

 

リチウムイオン電池はまだまだ進化する

EV(電気自動車)用バッテリーとしては現在リチウムイオン電池が使われているがこの電池はまだ性能的に不十分でまた液体の有機物を電解質としているため、液漏れ、燃焼等の危険性を含んでいる。この欠点を改良する方法として各社で固体の電解質を用いた全固体蓄電池の開発が進んでいる。
トヨタの予定としては2020年代前半に実用電池を開発し、2030年頃に量産しEVへの搭載が始まるとしている。(これについては前回のブロクご参照)しかしながら固体電池にも急速充電の問題(内部に結晶ができてショートする)や組立時の問題(電解質に硫黄が含まれているため空気に触れるとガスが発生する)の問題があり量産の見通しは立っていないため、一気に現行リチウムイオン電池に取って代わることにはならないと考えられている。

その間、従来のリチウムイオン電池もいろいろ性能向上が図られており、固体電池が完成しても簡単には置き換わらないと予想される。

(図は最後のサイト内より)

現在行われているリチウムイオン電池の改良の一部は以下の通り。

1.有機液体電解質の改良
有機電解液は主にリチウム塩(リチウムイオン)とこれを溶かす溶媒からなる。
一般に非常に多くのリチウム塩と溶媒があるが、以下に一例を示す。
・リチウム塩:LiPF6(六フッ化リン酸リチウム)
・溶媒:EC(炭酸エチレン)、EMC(炭酸エチルメチル)など

1)横浜国立大の渡辺教授はこれまでに較べてリチウムイオン濃度を3倍にした電解質を開発した。
溶媒には「グライム*」と呼ぶ有機溶媒を使用した。この溶媒はリチウムイオンを囲む性質があり、これを混ぜる割合を工夫することでグライムのほぼ全ての分子がリチウムイオンに 結合する条件を見つけた。これによりこれまでリチウムイオンに結合していなかった自 由な分子が充放電の繰り返しで電子などと反応し電解液や電極の劣化する原因にな っていた。(*1,2‐ジメトキシエタン、ジメチルセロソルブ

2) 東京大学の山田敦夫教授らは2014年、濃厚電解質を使うことにより電池の充電時間を3分の1にすることに成功した。また2107年にはリン酸トリメチルと呼ぶ燃えにくい有機溶媒を活用し、火を近づけても引火せず、200℃まで加熱すると火を消す蒸気が発生するという消火剤としても働く濃厚電解質を開発した。

2.電極の改良
1)正極材の改良 
正極材には、①電圧が高い、②充放電効率が高い、③電極密度が高いことなどの物性が求されるが、これらの性能をバランスよく満たす素材として、これまで民生用途では、コバルト酸リチウム(LiCoO2: LCO)が主に採用されていた。
しかし、コバルト材料は資源的な制約が多く、価格面も不安定かつ高騰するリ スクが高いため、代替材料の検討が進められている。

車載 リチウムイオンバッテリー用正極材としては、コバルト酸リチウム(LCO)以外にも3 元系(LiNiMnCoO2:NMC)、マンガン系(LiMn2O4 :LMO)、ニッケル系(LiNiCoAIO2:NCA)、鉄系(LiFePO4:LFP)など複数の材料系が実用化されていると共に、現在も改善・改良が進められている。
また、この他にも、(有機)硫黄系、固溶体系、ケイ酸塩系が次世代材料候補として注目されている。
このような状況の中で、光学ガラス大手のオハラは独自に開発したLICGCと呼ぶガラスの材料を正極に混ぜて使い試作した電池では、出力や容量の向上、充電時間の短縮、零下20℃での充電での容量の増大を確認した。
また岡山大の寺西助教はリチウムイオンを引きつける性質を持つ金属酸化物に注目し、チタンやバリウムを含む物質を粒子にして正極の表面に付け試作した電池では通情の5倍の速さで充電することができた。

以上の様に、現行液体電解質リチウムイオン電池の改良で、充電が速く、容量が大きい等電池性能が高まればまだまだ次世代電池に取って変わられることはなさそうだが、はたしてどうか。

2)負極材の改良
現在リチウムイオン電池の負極材は黒鉛が主に用いられている。
さらに高容量の負極材として理論的にはシリコン系合金が黒鉛に較べて10倍以上の容量(リチウムイオンを保持することが出来る)を持つと見込まれているため、各社が研究開発されている。
しかし充放電時の体積変化が400%にもなり、電極の構造破壊を引き起こしやすく、充放電サイクル寿命が短くなるという欠点があった。
電池メーカーは各社この問題の克服に苦心しているらしい。

最近のニュースでは
1)大阪のベンチャー企業アタッカート(参考1)が、リン酸やケイ酸の化合物を使うことで剥がれを防止する接着剤を開発し、充放電の繰り返しでも剥がれをなくすことに成功し、電極単体の性能は炭素材料の約10倍に向上し、電池としての容量が1.5倍になったとしている。
今後他社も技術開発が進めば、負極はシリコン系が主流となりそうだ
参考1)ケイ酸系無機バインダーを用いたSi負極の電極特性

2)東芝は負極の材料にチタンとニオブの酸化物を使い微細な結晶が揃うように合成したところリチウムイオンが入り込み易くなり容量が高まった。其の結果従来の5倍の電流で充電が可能となり、6分間で容量の90%まで充電出来るようになった。従来は80%の充電に30分間かかっていた。
また試作電池による充放電の繰り返し実験では5000回でも性能低下はなかった。
マイナス10℃でも急速充電が出来た。炭素の負極に多くの電流で充電すると析出して性能が落ちたり、劣化が早まったりしていたがチタン・ニオブ酸化物はこうした問題が置きないという。今回320km走行の見通しが得られたが、今後6分間の充電で400kmの走行出来る電池の開発を目指すとしている。

今後車載用をメインとして現行リチウムイオンの性能向上と全固体リチウム電池及びポストリチウムイオン電池との開発競争から目が離せない。

<参考サイト>
リチウムイオン2次電池用電極材料

リチウムイオン電池における吉野彰博士の業績