リチウムイオン電池を大幅に超えるリチウム空気電池、ソフトバンクも参入

現在繰り返し使えるバッテリー(二次電池)はリチウムイオン電池が主流を占めているが、
電解質に有機性の液体を使用していることから発火や爆発等の安全性の問題があり、
さらにエコカーへの車載用電池としては蓄電容量(走行距離)や、耐久性(繰り返し充放電回数)が不十分とされ、更に高性能な電池が期待されている。

この期待に応じられるバッテリーとして、現在電解質に無機系個体電解質を使用する全個体電池の開発が、2022年頃の実用化を目指してトヨタ自動車を先頭に各社で進められている。これらの件についてはこれまでのブログで述べてきた。
(最新情報としては、非車載用の小型電池ではTDKが今年6月から生産予定とのこと)

一方、この全固体リチウムイオン電池は正極に希少資源のコバルトを使うという点や容量密度(走行距離)がまだ不十分のため、更にこれらの問題点を解決し、課題に対応し得る可能性のある電池として理論エネルギー密度が現行のリチウムイオン電池の5-10倍のリチウム-空気電池がある。(図の金属ー空気電池の領域)


このリチウム-空気電池は負極にリチウム金属を用い、正極に空気中の酸素を利用するもので、「究極の二次電池」とも言われ、現在世界的に研究開発が進められている。

物質・材料研究機構(NIMS)で開発されたリチウム空気二次電池の原理模式図


正極の空気(酸素)極、セパレータ―、負極のリチウム金属からなるシンプルな構造となっている。
この電池はコバルト等の希少資源を使う必要がなく、負極物質は空気を原料とするもので現行のリチウムイオン電池に比べて大幅な軽量化とコストダウンが期待されている。

リチウム空気電池の基本反応
放電(電気の取り出し)では、負極のリチウム金属からリチウムが溶けだし、リチウムがプラスイオンとなり、その時放出される電子が電流として外部回路に流れ仕事をする。
リチウムイオン(Li)の方はセパレータ―を通り、正極(多孔性カーボン)に達し空気中の酸素(O)と反応して過酸化リチウム(Li)となり正極の多孔性カーボン上に析出する。
充電は、外部からの電気エネルギーにより放電の逆つまり正極に蓄積した過酸化リチウムをリチウムイオンと酸素に分解し、陰極にリチウム金属にして戻す反応。

期待されるこのリチウム空気電池には以下の課題があった。
1)理論大容量の実現、
2)低いエネルギー効率と、短寿命

これらの課題に対して、NIMSは下の取り組みを行い大幅に改善した。
1)大容量の実現
正極のカーボンに不織布状のCNT(カーボンナノチューブ)シートの採用により達成。
これはCNT不織布の大きな表面積と柔軟な構造の寄与により、酸素の通りがよく、放電反応による過酸化リチウムが表面に析出してもCNTが変形し析出反応が制限されなくなった為と考えられている。また充電により元の形状に戻るため繰り返し回数の増加に寄与している。下図がその様子を示している。

2)低いエネルギー効率と短寿命
低いエネルギー効率の原因は、過酸化リチウムの分解が起こりにくいため充電電圧(過酸化リチウムの分解電圧)が放電電圧より高くなることによる。
また短寿命の原因は、充電時過酸化リチウムが分解されリチウム金属として負極に析出する際に、デンドライト状(樹枝状)になり、リチウム金属を劣化させると共に短絡を生じる。

この問題に対し、2017年7月31日、物質・材料研究機構(NIMS)の研究チームは同電池のエネルギー効率と寿命を大幅に改善する新たな電解液を開発したと発表した。

新しく開発された電解液は、臭化リチウム(Li)と硝酸リチウム(LNO)を含む混合電解これによって、充電電圧が3.5Vに、エネルギー効率の値77%まで大幅に向上した。
また、寿命低下の一因とされていたリチウム金属の樹枝状物質(デンドライト)の析出も防止することで、従来20回以下であった充放電サイクルを50回以上(現在はもっと大きな数字となっていると思われる)まで向上させた。

下の画像で概況を知り、正確には参考サイト2をご参照ください。


 

 

 

 

 

 

今年2018年4月11日ソフトバンク物質・材料研究機構(NIMS)は、今後のIoT時代に向けての各種デバイスやあらゆる産業に必要となる高性能電池の開発を目指し、先端技術開発センターを設置リチウム空気電池を共同で開発に着手すると発表した。(参考サイト3,4

これまでも数々の投資を行って成功させてきたソフトバンクが参入することで、リチウム空気電池の開発が一気に進む可能性もある。

一方トヨタ自動車は、車載用として全個体リチウムイオン電池を2020初頭に開発するとされていたが、リチウム空気電池も開発しており、その圧倒的容量の大きさ(走行距離)から今後の進展次第では車載用電池の実現が意外に早く来るかもしれない。

全個体電池、他の金属も含めてリチウム空気電池の今後の進展に注目していきたい。

 

<参考サイト>
1.(CNT不織布の正極)
  容量はリチウムイオン電池の15倍、超高容量の「空気電池」を開発 
2.(新電解液)
  リチウム空気電池のエネルギー効率と寿命を大幅に改善する電解液を開発
3.(SBNIMS)①
  究極の“リチウム空気電池”、ソフトバンクとNIMSが共同開発へ
4.(SBNIMS)②
   リチウム空気電池! ソフトバンクと物質・材料研究機構NIMSが共同開発に着手

 

 

 

 

 

 

 

 

 

電気自動車(EV)用「全固体電池」が進化中

ガソリン車に変わる次世代のエコカーとして10年程前まではFCV(燃料電池車)が本命視され、水素供給基地等のインフラが整備されるまでの繋ぎとして、ハイブリッド車(HV)が位置するだろうと考えられていた時期があった。
電気自動車(EV)は電池が高価でその性能が低く、航続距離がガソリン車と太刀打ち出来なかったためだ。

しかし電池(リチウムイオン電池)の性能が上がり、環境対策として欧米の政策や大消費国中国の国策等の影響から、近年世界の潮流は圧倒的に電気自動車(EV)が主流になって来た。
それでこれまでHV、PHV、EVと距離を置いていた(かのように見えた)トヨタも大勢力をつぎ込みEVの開発に乗り出した。
そして車載用電池としてリチウムイオン電池に換わる全固体型電池が本命視されている。

現在エコカーと呼ばれているハイブリッド車(HV)、プラグインHV車(PHV)、そして電気自動車(EV)はいずれもリチウムイオン電池を使用している。

そのリチウムイオン電池はリチウムイオンの通り道として有機液体電解質が使われており
電池性能として航続距離が短い、充電時間が長い、そして液漏れや発火等の安全性の問題がある。

特に安全性の問題に関しては燃えない物質でできないか、液漏れしない固体できないかと20年以上前から考えられていたのだが、リチウムイオンがスムーズに流れる(イオン伝導率が高い)固体電解質の開発が成功しなかった。

◯固体電解質の開発
2011年トヨタと東工大の菅野了次教授(参考2-1)が共同で従来の液体電解質よりリチウムイオンを通し易い新しい固体電解質を開発した。リチウムイオンの通り易さを示すイオン伝導率の数値で従来の電解液を超えた。
更に2016年には塩素イオンを加えることによりイオン伝導率が従来の液体の電解液に較べて2倍、出力は3倍以上となった。
イオンが動きやすくなると電池の出力が高まり、EVでの発進や加速などが向上することが期待される。
これで全固体型蓄電池(参考2-2)の可能性が一気に高まった。
充放電を1000回繰り返しても容量は殆ど落ちなかった。
急速充電の可能性も期待される

◯負極材料の開発
物質・材料研究機構の高田副拠点長は従来一般的に使われてきた炭素をシリコンに置き換えた新しい負極を開発した。
この負極は容量が既存のリチウムイオン電池の約10倍となり電池全体の容量は1.5倍に増大した。
但しシリコンは充電する時に体積が4倍に膨らむためこれを抑制した上での産化技術が検討されている。

◯正極材料の開発
大阪府立大学の辰巳教授らは、正極材料に硫化リチウムを混ぜた物を使用し、リチウムイオンを動きやすくした。結果正極の容量も2倍超となった。この試作電池はでは2000回の充放電の繰り返しにも劣化しなかった。

◯更なる耐久性向上
太陽誘電は電極材料のコバルトを電解質にも加え、固体電解質を電極と一緒に焼き固めた電池を試作し、4000回の充放電を繰り返しても当初の8割の容量を保つことを確認した。

上記の様に期待を集める全固体型リチウムイオン電池だが、固体電解質にはまだ
1.急速充電で内部に結晶ができショートする問題
2.開発された固体電解質は硫黄を含んでいるため空気中の水分に触れるとガスが発生する等の問題がある。
これらの問題解決と更に量産化技術の確立が控えている。
これら成果と問題を俯瞰しながら、自動車会社、化学系各社が競って固体電解質使用の全固体リチウムイオン電池の開発を競っている。

  上記の現状まとめ(12/9日経産業新聞参考)

高出力全固体電池の開発の現状と将来性
特性 リチウム

イオン電池

全固体電池
現在 将来
出力 新材料で改善
容量 電極要改善
寿命 一部十分な結果あり
急速充電 内部結晶発生
量産 水分でガス発生

上記の様に現状は全固体型電池は開発途上であり、特に化学反応のメカニズム解明が必要と考えられている。

 

EV で出遅れていたトヨタは2020年代前半までの実用化に向け、EV用次世代バッテリー「全固体電池」の開発を急いでいる。


そしてハイブリッド車(HV)などを含めた電動車の販売を2030年ころに全販売台数の50%程度まで引き上げる計画を明らかにした。具体的には、電気自動車(EV)と燃料電池車(FCV)で100万台、HVとプラグインハイブリッド車(PHV)で450万台、合計550万台の電動車販売を目指す。

またEVを2010年に出していた日産は20年代の後半に固体電池での実用化を目指すとしている。
全固体電池は、自動車メーカー以外にも様々な企業が研究に取り組んでいる。
西独ボッシュ、村田製作所、日本特殊陶業等。
更にあの家電の英ダイソンが全固体電池を載せたEVを20年までに売り出すそうだ。

今後各社の全固体電池関連ニュースに注目して行きたい。

 

<参考資料等>
1.そもそもリチウム電池とは(リチウム電池の基礎)(おさらい)
リチウムイオン電池の豆知識
全固体電池って何だろう?
③リチウムイオン二次電池(ウィキペディア)

2.固体電池の理解に役立つお薦めサイト
参考1.菅野教授が語る、EVはこう進化する
参考2.EV向け本命 5分で完全理解「全固体電池」.
参考3リチウムイオン電池の3倍以上の出力特性をもつ全固体電池を開発

3.トヨタとパナソニックの提携発表
トヨタとパナソニックが車載用角形電池事業の協業について検討を開始
そもそもトヨタは現在のどの会社よりも早く電池開発に関心をもっていたのだ。
(自動織機を開発した豊田佐吉は1925年、革新的な電池の発明に資本金と同じ金額(当時の100万円)の賞金を掛けていた。)

 

 

 

 

マグネシウム電池はリチウムイオン電池の後継になるか

現在再充電で繰り返し使える2次電池は各種あるが、現在最も普及しているのがリチウムイオン電池であり、今後もまだまだ主役として市場の拡大は続くと見られている。

しかしリチウムやコバルトの希少資源(レアメタル)を多用するので原材料の安定的な確保や使用後のリサイクルに課題がある。

リチウム電池の次の候補の一つに、資源が豊富なマグネシウムを利用するマグネシウム電池が考えられているが、電力密度が低いことや反応で電極表面に絶縁物が生じる等技術課題があった。

東工大の矢部教授らは、薄膜状のマグネシウム電極を使うことでこれらの課題の克服に目途をつけ、ベンチャー企業を興し、マグネシウム電極を薄膜にすることで、電池の小型化、持続時間の増大、電池の大容量化にも道をつけた。

非常用電源としては既に企業と組み2014年、少容量タイプが発売されている。
また長期間劣化しにくいことや取扱性の良さなどから防災用に期待されている。(水と塩で発電するLEDランタン

2次電池としてはホンダや埼玉県が実用化の目途を付けたとされ関連銘柄の株価も一次急騰した。
しかし技術の詳細が明らかにされていない。

リチウムイオン電池並の性能や価格を実現するにはまだ年月が掛かりそうで、これからも当分はリチウムイオン電池の拡大が続きそうだ。

通常のガソリン自動車用バッテリー鉛電池が普通だが軽量化の為、リチウムイオン電池が一部採用され始めてはいる。しかし安定性、取扱性、値段の安さ等でまだすぐには取って代わられるものではなさそうだ。

従って、リチウムイオン電池の性能を大幅に上回る2次電池が期待されており、
当面その最も近い物が硫黄電池のようだが、しかし当面の本命はやはりマグネシウム二次電池かと思わせられる。

産総研から2016年3月に発表された資料(ロードマップ)は、ビジュアル化を徹底させたプレゼン資料で、マグネシウム電池の開発状況がよく分かる。(内容は難しいが)
ポストリチウム二次電池の開発~マグネシウム二次電池の創製に向けて~)

 

最後のページ(22ページ)にも注目。
一見元素周期表みたい、いや全然違う。
よく見ると元素記号だけで作った英文メッセージだ。
ユーモアもあり、字(アルファベット)余りも無い。
良く考えられた(組み合わせた)ものと感心した。
Motivation Research Synthesis.I am Lunatic.
(Thank you for your) Cooperation.
かな?