全個体電池の新製法出現。全個体リチウムイオン電池の実用化が早まるか?

現行のリチウムイオン電池の性能を上回る固体電解質を用いた全個体リチウムイオン電池の開発が世界中で競われている。

我が国については、大枠以下の状況であろう。

1.車載用全個体リチウムイオン電池(東工大/トヨタグループ)
東工大の菅野教授が1911年に開発したLPGS系から進化した固体電解質を用いたリチウムイオン電池がEV用途としてトヨタ自動車を先頭に22年の実用化を目指して開発されている。(関連ブログ有り)

2.超小型~小型の全個体電池
既にTDKをはじめとした電装部品メーカーで商品化された(セラチャージ等)。

3.全樹脂リチウムイオン電池
元日産でEVの電池開発に携わった堀江氏が慶応大に移り、ゲルを用いた全樹脂リチウムイイオン電池を開発し、高吸水性ポリマ―メーカーである三洋化成と日本触媒とで共同開発が進んでいる。(前回ブログ)

このような状況の中
ベルギーの研究機関imecが開発しパナソニックも参加する新しい製造法で、安価で大容量の全個体電池が出現し、大型電池の実用化の前倒しが期待されている。

以下日経エレクトロニクス2019.8月号、(日経産業新聞9.27)より抜粋し概要をご紹介する。
その特徴は固体ナノコンポジット電解質(SCE)を開発したことである。

先ず電極の構成として
・正極の形成。これは既存の液体電解質のLiBと同じ。
今は正極にリン酸鉄リチウム(LiFePO)(LFPと表記)を使用。
・負極には金属リチウムLiを使用。
これらは今までと同じだが

imecが開発した電池の最大の特徴はその個体電解質でありその製造プロセスが注目されるものである。
即ち
・液状の電解質を電極に染み込ませた後に乾燥して固化する。
・この固体電解質の主成分はSiO2でありふれた酸化物材料であるが、比表面積が   1400m2/g(活性炭レベル)と極めて高い多孔質になっておりその内壁にイオン液体のLi塩が結合している。
この製造法は、ゲル作成の古い技術と新しい素材であるイオン液体を組み合わせたところに特徴がある。

電池製造の流れ(考サイト1より)

TEOS(オルトケイ酸テトラエチル)イオン液体によるゲル電解質の形成

・まず、TEOSと呼ぶSi系材料をイオン液体中に分散させた後、水を加えて(加水分解して)ゲル化する。
水を除去後、さらに二酸化炭素(CO2)を用いた超臨界乾燥を施す。
すると「エアロゲル」と呼ばれる極めて軽いスポンジ状の固体材料になる。
この方法は80年前からある技術だが、イオン液体を混ぜる点が新規なところ。
これが、上述の電解質が液体から固体になるプロセス。
この構造により、電解質は固体化後も弾力があり、充放電に伴う電極中の活物質の膨張収縮を吸収できるとする。

この電池の特徴は
1.製造
・コバルト等の高価な資源を使わず、従来のLiイオン電池をつくる設備を流用出来るため
低コストで製造が出来る。
大型(A4サイズ)も製造可能。

2.性能
・体積エネルギー密度425ワット時/リットル(以下Wh/Lとする)、この値は現在のLiイオン電池とほぼ同じだが、2024年には1000Wh/Lまで高められるとする。

その根拠としては
・現在用いている正極材料は電位窓約3.5Vのリン酸鉄リチウム(LFP)だが、同5.5Vの正極活物質を使えば約1000Wh/Lも可能となる。(現在のLiBは800wh/Lが限度とされている)
・今回の電解質が高温に強い(320℃まで利用可能)ため、現在の車載用LiBでは必須の冷却システムが不要となり現状でも現在の約2倍の体積エネルギー密度となる。
・充電時間も現在は2時間程掛るが将来大幅に短縮(20分で充電)出来るとしている。
・imecが用いるこの固体電解質のイオン電導率は現在約10mS/cmで東工大/トヨタ自動が開発した電解質と同等の性能とされる。同社はさらにこれを10倍の100mS/cmに引き上げる事を目標としている。 

現在の課題は急速充電の実現。
一般に全個体電池は急速充電に優れた物が多いが、このimecの電池の急速充電特性は液体電解質のLiBと同等かやや低い。速くすると急速に容量が低下する。
この原因として2つが推測されている。
その1.固体電解質がイオン液体とのハイブリッドであること。
その2.Li負極を用いるためデンドライト(樹状突起)ができこれが充放電の律速となっていること。
しかしimecはこの対策として、電極の構造をジャングルジムの様な規則的な空間を備えた
ナノメッシュ電極とすることで制御出来るとしている。 

今後現行リチウムイオン電池の頑張り(さらなる性能向上)と新固体電池の商品化の進展に注目して行きたい。

<参考サイト>
1.imecがA4型5Ahの全固体電池、高伝導率酸化物系電解質で

2.全固体電池の実用化、目前に TDKと日立造船、今年から本格量産 「安全で大容量化」容易に2019.3.25 

3.全固体電池の菅野教授が語る、EVはこう進化する(東工大菅野教授)
次世代電池の“本命”はリチウムイオン電池の限界を超えるか(2018年1月17日)

4.全固体リチウムイオン電池の研究開発プロジェクトの第2期が始動
(2018年6月15日)国立研究開発法人新エネルギー・産業技術総合開発機構

5.イオン液体【ウィキペディア】

6.電気伝導度の基礎

 

 

 

開発進む次世代電池

現在リチウムイオン電池が全盛ではあるが、いくつかの問題や課題(火災の危険性、充電時間が短い、容量が小さい、資源問題等)があり、これらを乗り越える次世代電池の開発競争が激しくなっている。
以下その概要は以下の通り。

電池の種類 特徴 用 途 現在の課題 実用化の目標
全個体電池(硫化物型) 急速充電が可能  

電気自動車(EV)

空気に触れるとガスが生じる 2020年代前半
(トヨタは過去22年としたが)
全個体電池(酸化物型) 安全で扱い易い イオンの動きが遅い(10分の1) 2030年代
(小型はTDK等で先行試生産中)
ナトリウムイオン電池 資源が豊富
安価で高い出力
定置型大型蓄電池

(風力発電用)
(太陽光発電用)

電池が重い
(EVには不向き)
数年後
リチウム硫黄電池 安価で高容量 耐久性
(硫黄が溶け出し劣化し易い)
2030年以降
リチウム空気電池 小型で軽量 ドローン
ウエアラブル端末
水分に弱い
寿命が短い
2025年

1.全個体電池
2011年東工大菅野教授が既存の液体電解質の性能を上回る固体電解質を発見してからその後急速に研究が進展した。ただし硫化物系のため、空気に触れるとガスが生じる等の問題がある。これを解決できる酸化物系の開発が進んでいるがイオンの動きが遅い等の問題があり実用化は硫化物系よりだいぶ先になるとみられている。
電気自動車(EV)用途に、トヨタやパナソニックが開発中。
しかし非自動用としてセンサーやウエアラブル端末には、酸化物系の小型製品が既にTDKやFDKで試生産されている。

全個体電池に関しては別途また取り上げたい。

2.ナトリウムイオン電池
ナトリウムイオン電池の最大の魅力は安さだ。資源は普遍的に存在し枯渇の心配はない。また電極はリチウムがコバルト等の高価な金属を使用するのに対し、安い鉄などが使える。課題は電池が重くEVに乗せると後続距離を伸ばし難いこと。
したがって移動用ではなく自然エネルギーで作った電気を蓄える定置型の大型電池が有力。実用化も数年後と見られている。

3.リチウム硫黄電池
安価な硫黄を使うリチウム硫黄電池も自動車用は不向きで、ナトリウムイオン電池と同様定置型が適している。コストは4分の1になるとされるが、電極の硫黄が溶け出しやすいなど耐久性が問題。

4.リチウム空気電池
一時電池としては既に販売されているが、二次電池として現在開発中。
小型電池として有望。空気中の酸素で充放電する。ドローンやウエアラブル端末等の用途が期待されている。18年4月ソフトバンクとNIMS(物材機構)が25年の実用化を目指し共同研究を始めた。

最後に
現在全盛の液体電解質を用いたリチウムイオン電池の後継として全個体電池を始めとして
各種の電池が研究・開発されているが、現行電池の改良も進んでいるため、中型以上の電池については、完全に置き換わり得る電池が出てくるかまだ予断を許さない。
現在全個体電池が最も注目されているが、IOT時代を見据え、既に大量の超小型品が生産されている現状を見ると、まず超小型全個体電池が最も早く生産拡大・普及していくのでは無いだろうか。

 

次世代電池サイト
その1.(NEDO)
その2.(JAIMA)
その3.(JST)
その4.(日経XTEX)

 

 

 

夢の全個体電池(NHKサイエンスZERO)

先日NHK-Eテレ「サイエンスZERO」で全固体電池開発の番組があったので概要を紹介したい。

冒頭EV自動車レースの場面が展開される。
この部分は、現状のバッテリーをEV自動車レースに使うとバッテリーが大きい、充電時間が長い、高速走行では持続時間が短くなる(即ち航続距離が短縮)等の現在のリチウムイオン電池での問題を視聴者にわかりやすくアピールしたもの。
これら現状のリチウムイオン電池の問題は、電解質に可燃性液体を使っているためであるが、これらの問題の解決には、当面の主流として電解質を固体にした全固体電池と考えられ現在世界中で開発競争が繰り広げられてている。(過去ブロブもご参照ください

東工大の菅野了次教授は、30年も前からこの固体電解質でのリチウムイオン電池を研究していた。
しかし研究開始から10年たった1991年、液体の電解質を使ったリチウムイオン電池が実用化され現在主流の二次電池としてIT機器等各所に使われている。(より短時間での充電、長時間の使用等の要望はあるが)
その開発者の一人吉野彰氏は毎年ノーベル賞候補に上がるが、今年日本版ノーベル賞ともいえる日本国際賞を受賞した。

そんな中、菅野教授は固体電解質にこだわり続け、最近実用一歩手前(9合目)まで来たという。

その背景には3つのブレイクスルーがあった。

ブレイクスルー1:
2011年、液体電解質を上回る性能の固体電解質の発見。組成はLi10GeP2S12
 その結晶構造は、GeとPとSががっちりとした結晶構造を取っており、一部のLiイオンがまるで液体の様に動いていた。
ただし性能(エネルギー密度、出力密度)はリチウムイオン電池を上回ったが、高価なGeを使っているのが問題。

ブレイクスルー2:
2016年、Geを使わずに更に高性能な電解質を開発。その組成はLi9.54Si1.74P1.44S11.7Cl0.3

Geの代わりにSiを使いほんのわずかの塩素を加えたところ、それまでの性能を上回る固体電解質が得られた。

この電解質を大強度陽子加速器施設「J-PARC」の粉末中性子解析装置を使ってリチウムイオンの分布状態を調べるとGeが有るときよりもより3次元的に広がっている。

また熱的な安定性に関しても、通常の(液体電解質の)リチウムイオン電池は60度での使用とされているが、今回の組成の固体電解質は150度くらいでも十分使える。(そもそも粉末を500度に焼いて作る)
また耐久性である充放電回数も100度での結果では1000回でも全く劣化しない。

ブレイクスルー3:
性能を低下させる界面の問題を解決。
電流が流れやすい電解質は出来たが、作った電池は思ったより電流が流れなかった。
この原因は酸化物(正極のコバルト酸リチウム)の方が硫化物(開発した固体電解質)よりリチウムイオンを引きつける力が強い為、正極に接触している電解質の界面部分のリチウムイオンが正極に引き抜かれリチウムイオンの無い空間が出来、不均一な固体電解質となっているためであった。
そこでNIMSの高田氏は両者間にチタン酸リチウムの薄膜(数ナノメートルのLiTi5O12)を導入することで、通常の3倍(600w/kg)の出力が得られた。

ただし現在その膜の働きの原理はまだわかっていないという。

現在この原理の解明中であり、解明されれば更に高性能な全個体電池の開発につながると考えられている。

尚、
NEDO(国立研究開発法人新エネルギー・産業技術総合開発機構)は2018年6月15日付で、全固体リチウムイオン電池を早期実用化するための研究開発プロジェクトの第2期をスタートさせた。
その声明文は以下の通り。
「本プロジェクトでは、自動車・蓄電池・材料メーカー23社および大学・公的研究機関15法人が連携・協調し、全固体リチウムイオン電池のボトルネック課題を解決する要素技術を確立しつつ、プロトタイプセルを用いて新材料の特性や量産プロセス・EV搭載への適合性を評価する技術を開発します。また、日本主導による国際規格化を念頭に置いた安全性・耐久性の試験評価法を開発します。さらに、研究開発と並行して、電動車両が大量普及する将来の社会システムのシナリオ・デザインを検討します。」

<参考サイト>
次世代電池を牽引する、全固体電池開発
Nature Energy 2016年4月)
トヨタと東京工業大が開発する全固体電池の登場はエンジンを場外に送るか    (Motor Fan 2017/08/11)
全固体電池の菅野教授が語る、EVはこう進化する。 次世代電池の“本命”はリチウムイオン電池の限界を超えるか。
(日経ビジネス 2018年1月17日)

 

最後に
トヨタ自動車は全個体電池を搭載したEVを2022年に発売すると発表している。
番組では、全固体電池の開発が登山に例えるならほぼ9合目に来たと菅野教授は述べておられるが、番組で公開出来ない部分もあるはずなので、トヨタ及び他の会社での車載用電池としての性能、製造プロセス等相当進んでいると思われる。
今後外国勢(特にドイツ、中国)の情報も含め、車載電池の先端状況に注目してゆきたい。

 

 

 

 

電気自動車(EV)用「全固体電池」が進化中

ガソリン車に変わる次世代のエコカーとして10年程前まではFCV(燃料電池車)が本命視され、水素供給基地等のインフラが整備されるまでの繋ぎとして、ハイブリッド車(HV)が位置するだろうと考えられていた時期があった。
電気自動車(EV)は電池が高価でその性能が低く、航続距離がガソリン車と太刀打ち出来なかったためだ。

しかし電池(リチウムイオン電池)の性能が上がり、環境対策として欧米の政策や大消費国中国の国策等の影響から、近年世界の潮流は圧倒的に電気自動車(EV)が主流になって来た。
それでこれまでHV、PHV、EVと距離を置いていた(かのように見えた)トヨタも大勢力をつぎ込みEVの開発に乗り出した。
そして車載用電池としてリチウムイオン電池に換わる全固体型電池が本命視している。

現在エコカーと呼ばれているハイブリッド車(HV)、プラグインHV車(PHV)、そして電気自動車(EV)はいずれもリチウムイオン電池を使用している。

そのリチウムイオン電池はリチウムイオンの通り道として現在は有機液体電解質が使われており、電池性能として航続距離が短い、充電時間が長い、そして液漏れや発火等の安全性の問題があるとされている。

特に安全性の問題に関しては燃えない物質でできないか、液漏れしない固体できないかと20年以上前から考えられていたのだが、リチウムイオンがスムーズに流れる(イオン伝導率が高い)固体電解質の開発が成功しなかった。

◯固体電解質の開発
2011年トヨタと東工大の菅野了次教授(参考2-1)が共同で従来の液体電解質よりリチウムイオンを通し易い新しい固体電解質を開発した。リチウムイオンの通り易さを示すイオン伝導率の数値で従来の電解液を超えた。
更に2016年には塩素イオンを加えることによりイオン伝導率が従来の液体の電解液に較べて2倍、出力は3倍以上となった。
イオンが動きやすくなると電池の出力が高まり、EVでの発進や加速などが向上することが期待される。
これで全固体型蓄電池(参考2-2)の可能性が一気に高まった。
充放電を1000回繰り返しても容量は殆ど落ちなかった。
急速充電の可能性も期待される

◯負極材料の開発
物質・材料研究機構の高田副拠点長は従来一般的に使われてきた炭素をシリコンに置き換えた新しい負極を開発した。
この負極は容量が既存のリチウムイオン電池の約10倍となり電池全体の容量は1.5倍に増大した。
但しシリコンは充電する時に体積が4倍に膨らむためこれを抑制した上での産化技術が検討されている。

◯正極材料の開発
大阪府立大学の辰巳教授らは、正極材料に硫化リチウムを混ぜた物を使用し、リチウムイオンを動きやすくした。結果正極の容量も2倍超となった。この試作電池はでは2000回の充放電の繰り返しにも劣化しなかった。

◯更なる耐久性向上
太陽誘電は電極材料のコバルトを電解質にも加え、固体電解質を電極と一緒に焼き固めた電池を試作し、4000回の充放電を繰り返しても当初の8割の容量を保つことを確認した。

上記の様に期待を集める全固体型リチウムイオン電池だが、固体電解質にはまだ
1.急速充電で内部に結晶(デンドライト)ができショートする問題
2.開発された固体電解質は硫黄を含んでいるため空気中の水分に触れるとガスが発生する等の問題がある。
これらの問題解決の先には更に量産化技術の確立が控えている。
これら成果と問題を俯瞰しながら、自動車会社、化学系各社が競って固体電解質使用の
全固体リチウムイオン電池の開発を競っている。

  上記の現状まとめ(12/9日経産業新聞参考)

高出力全固体電池の開発の現状と将来性
特性 リチウム

イオン電池

全固体電池
現在 将来
出力 新材料で改善
容量 電極要改善
寿命 一部十分な結果あり
急速充電 内部結晶発生
量産 水分でガス発生

上記の様に現状は全固体型電池は開発途上であり、特に化学反応のメカニズム解明が必要と考えられている。

 

EV で出遅れていたトヨタは2020年代前半までの実用化に向け、EV用次世代バッテリー「全固体電池」の開発を急いでいる。


そしてハイブリッド車(HV)などを含めた電動車の販売を2030年ころに全販売台数の50%程度まで引き上げる計画を明らかにした。具体的には、電気自動車(EV)と燃料電池車(FCV)で100万台、HVとプラグインハイブリッド車(PHV)で450万台、合計550万台の電動車販売を目指す。

またEVを2010年に出していた日産は20年代の後半に固体電池での実用化を目指すとしている。
全固体電池は、自動車メーカー以外にも様々な企業が研究に取り組んでいる。
西独ボッシュ、村田製作所、日本特殊陶業等。
更にあの家電の英ダイソンが全固体電池を載せたEVを20年までに売り出すそうだ。

今後各社の全固体電池関連ニュースに注目して行きたい。

 

<参考資料等>
1.そもそもリチウム電池とは(リチウム電池の基礎)(おさらい)
リチウムイオン電池の豆知識
全固体電池って何だろう?
③リチウムイオン二次電池(ウィキペディア)

2.固体電池の理解に役立つお薦めサイト
参考1.菅野教授が語る、EVはこう進化する
参考2.EV向け本命 5分で完全理解「全固体電池」.
参考3リチウムイオン電池の3倍以上の出力特性をもつ全固体電池を開発

3.トヨタとパナソニックの提携発表
トヨタとパナソニックが車載用角形電池事業の協業について検討を開始
そもそもトヨタは現在のどの会社よりも早く電池開発に関心をもっていたのだ。
(自動織機を開発した豊田佐吉は1925年、革新的な電池の発明に資本金と同じ金額(当時の100万円)の賞金を掛けていた。)