世界を一変させたネオジム磁石の開発

世紀の大発明と言われるネオジム磁石は1982年に発明されてから30年以上に亘って、最強の磁石として、電気自動車(EV)や風力発電、ロボットなどの普及に貢献している。
これを発明したのは、サラリーマン研究者だった佐川真人氏(73)。
毎年ノーベル賞にもノミネートされている。

日経産業新聞の仕事人秘録のコラムに同氏の幼いときから開発までの足跡が「ネオジム磁石執念一路」として連載(2016年12月7日から22日迄の全11回)されていたので、その概要をご紹介する。
<子供時代>
科学者を意識し始めたのは、小学1から2年生の時父親からノーベル賞の湯川博士の記事を読み聞かせてもらったのがきっかけ。その時「僕は科学者になってノーベル賞をとる」と両親に宣言したそうだ。(小学1,2年で、凄い!!)
小学6年の時父親の事業の失敗で貧乏になり兵庫県に引っ越した。
市立尼崎高校に進学。
<大学時代>
神戸大工学部電気工学科に入学。しかし電気工学には身が入らず、数学、物理、化学をよく勉強。
基礎研究がしたく、大学院に進学。永田教授の応用物理研究室で材料科学を学ぶ。
更に「ノーベル賞」を貰えるような研究をしたい」と磁石業界に人材を輩出した東北大学の博士課程に入学し、金属材料研究所では、自分でサビ防止のテーマを選び博士号を取得する。
<富士通時代>
大学の教員になることが出来ず、富士通に入社する。
配属された研究所ではこれまでの知見が全くないリレーやスイッチに使う磁性材料の開発を命じられた。
入社4,5年後、フライングスイッチに使う磁石の開発を命じられる。要は壊れにくい磁石の開発だ。
当時(1976,7年)はサマリウム・コバルト磁石が最強磁力とされており、この磁石の物理強度を高める研究を始める。

サマリウム・コバルト磁石の発明者は松下電器産業を経て信越化学工業の磁性材料研究所長を務めた俵好夫氏(この人はなんと歌人俵万智さんの父上だそうです。)

しかし研究をすすめるにつれ「なぜコバルトなのか」という疑問を抱く。
元素の中で磁性の強い元素は鉄、コバルト、ニッケルの3つだけだが、磁石の主成分は昔から鉄だった。だから本来なら鉄を主成分とする方が強い磁石になるはず。

コバルト主成分の考えは、1916年本田光太郎が鉄に多量のコバルトを合金化すると鉄だけの磁石の3倍も強い磁石になることを見つけKS鋼と名付け、そのKS鋼が世に出てから主流となった。
その結果それ以後アルニコ磁石(アルミニウム・ニッケル・コバルト)、サマリウム・コバルト磁石が開発される。

磁石は17元素からなる希土類(レアアース)を使うと強くなることがわかっている。
(希土類とは、スカンジウム、イットリウムとランタニド(15元素)のこと)
そこでどうせレアアースを使うのなら、コバルトより鉄の方が良いと素直に考えた。

当時世界中の研究者は「コバルトが必要」という固定概念のため、コバルトの一部を鉄に置き換える実験ばかりしていた。
しかし鉄の割合が2割を超えると磁気特性ががくんと落ちるため皆そこで諦めてしまった。

そこで100%鉄に置き換える(サマリウムを全く使わない)という発想で、なぜ鉄に置き換えても磁石にならないのかの理由を思索した。しかしアイデアは全く出なかった。

発明につながる着想は、1978年の金属材料研究所で開催された「希土類磁石基礎から応用まで」という会合で、東北大の浜野教授の短い説明から得た。
その説明とは「磁石になるには鉄と鉄の原子間距離が近すぎる」ということだった。

そこでレアーアースと鉄化合物の間に炭素やホウ素といった原子半径の小さな原子をにいれれば、鉄の原子間距離が広がるのではないかという仮説を立て動き始めた。

サマリウム+コバルトの代わりに、サマリウム+鉄と炭素やボロンを次々と試した結果
「サマリウム+鉄+ボロン」が有望という結果を得た。
レアアースと鉄だけの組み合わせの化合物ではキュリー温度(磁石が磁気を失う温度)が低すぎて実用磁石にならなかった。

ボロンがいいと分かり、サマリウムを除く16種のレアアース(つまり残り全ての)を混ぜてみた。すると「ネオジム+鉄+ボロン」がキュリー温度と磁気異方性(磁気モーメントの方向を固定する性質)が高いことを発見した。
しかし組成の他に、内部の磁化の乱れが全体に及ぶのを防ぐ為のセル状組織を磁石の中に作り込む必要があった。しかしこれが全然できなかった。

 

最強磁石を追い求めている内に、本来のテーマであるフライングスイッチに使う壊れないサマリウム・コバルト磁石が完成してしまった。

そこで今研究している「ネオジム+鉄+ボロン」の最強磁石の研究をしたいと会社(富士通)に申請したが却下された。

富士通研究所からは「磁石は材料メーカーがやること。半導体薄膜などの最先端の研究」を命じられたが、会社の方針に沿ったテーマ(磁気バブルメモリー等)を提案した。

昼は会社から認められた研究を、夜や土日は「ネオジム+鉄+ボロン」合金の研究を続けた。

 

30代後半になり管理職試験を受け合格し、特許の仕事に移り研究の第一線から退く。

磁石の実験がやりにくくなり、会社を去る決意を徐々に固めたいたためか上司との折り合いが悪くなり、強い叱責を受けた日、辞めますと啖呵を切りついに1982年1月38歳の時辞表を出した。

奥さんの承諾もあっさり貰えたが、辞表提出前から磁石研究を続けられる転職先として考えていた富士電気化学(現FDK)への転職は叶わなかった。

会社の規定で、辞表提出後3ケ月は在籍する義務があり、その間話しかけられることなく同僚は遠ざかって行った。しかしじっと座っているのは嫌で、大学の先輩でもある上司に空いている実験室を使うことを願い出ると、許可をもらうことが出来、溜まっていたアイデアを3ヶ月間で試すことが出来た。

この間で念願のセル状組織作りに成功し、成功した瞬間天井に手が届かんばかりに跳ね上がって一人で大喜びした。

転職先は関西の磁石メーカーに決めていたので、大阪に本社があった住友特殊金属の社長宛に

「コバルトを使わない最強磁石のアイデアがあると」手紙を書いた。

数週間返事が来ないので直接電話すると幸い岡田社長と直接会話することができ、面接後即採用となった。

<住友特殊金属時代>
住友特殊金属には1982年5月に入社。
まず「ネオジム+鉄+ボロン」の比率と添加元素の組成の検討に着手。
練っていた組成50通りのリストと製造条件を部下に渡し次々に試した。

正解はそのリストの中にあった。当時世界最強のサマリウム・コバルト磁石の記録もらくらく超えた。その時の比率はネオジム15、鉄77、ボロン8で今ネオジム磁石と呼ばれているもの。
しかし50℃以上になると磁力が急激に低下する欠点があった。

ネオジムの一部を希土類のレアーアースのジスプロシウムに置き換えると温度特性が格段に良くなった。摂氏200℃でも磁力は落ちなかった。
(ジスプロシウムは2010年に尖閣諸島の帰属問題で中国が輸出を停止)

82年8月から権利侵害されないように特許出願をどんどん進めた。
アメリカの研究チームも違う製法で出願していたが2週間早かった。

開発はとんとん拍子で進み発明してからわずか3年後の85年に量産を開始した。
ネオジム磁石の生産量は85年に年間200トン、86年400トン、87年800トンと倍倍ゲームで増えた。

主な用途は特に、HDDの磁気ヘッドを動かす駆動装置。サマリウム・コバルト磁石の2倍の磁力があるのでHDDの大容量化、エアコンの小型・省電力化はネオジム磁石が支えたと言われる。

ネオジム磁石の論文発表や特許出願でのトップネームを巡る社内関係のしこりで、在籍5年半の住友特殊金属を去る。住友特殊金属は2004年日立金属子会社化され現在完全に吸収合併されている。

<ベンチャー時代>
1998年2月住友特殊金属を辞めインターメタリックス(IM,京都市)というベンチャー企業を設立し世界を飛び回るも思うような成果は得られず。

2000年優れた事業を支援する「京都市ベンチャー企業目利き委員会」に選ばれる。
テーマはジスプロシウムが無くても耐熱性が高いネオジム磁石の開発。

2002年中小企業基板整備機構が運営する京大桂ベンチャープラザ(京都市)に入居し研究に専念。
そこで「プレスレスプロセス(PLP法)」という磁石の製法からプレス工程を省く新製法を工業化。
PLP法のメリットは、切り分け作業が無いので切り屑が出ない、酸素などの不従物の混入が無い、どんなに微細な粉末でも成形して磁石を作れること等。

磁石の粒径は小さいほど保持力と耐熱性が上がりジスプロシウムの使用量が減る。
この考え方は昔からあったがPLP法で工業化の道が開けた。

2010年秋に発生した尖閣諸島問題を端緒に中国がジスプロシウムの輸出を停止したことで脱ジスプロシウムの磁石開発が加速する。

三菱商事、大同特殊鋼、米モリコープの3社が出資し、磁石製造会社のインターメタリックス・ジャパン(IMJ)を設立。
13年からPLP法によるネオジム磁石の量産を始めた。
IMとIMJはともに大同特殊鋼の全額出資になり今年(2016年10月)顧問に迎えられるも自身は京大桂ベンチャープラザ内で、組成にちなんで付けたNDGEBというベンチャーで研究を続ける。
ネオジム磁石の生産は年10万トンを超え年10%のペースで増えている。

<終章>
そもそも鉄を主成分とする最強磁石開発の元になった考えは「磁石になるには鉄と鉄の原子間距離が近すぎる」という理論だった。
そこで原子半径の小さな原子をレアーアースと鉄の間に入れれば鉄との原子間距離が広がるだろうという仮設を立てて、「ネオジム+鉄+ボロン」という組成を発見。

しかし後の解明の結果、原子間距離は広がってはいなかったことが判明。
ボロンと鉄の電子が化学反応を起こしボロン付きの鉄がコバルトとほぼ同じ状態に変わっていた。(鉄のコバルト化という現象)

2012年、社会と学術に貢献した科学者を表彰する日本国際賞を受賞。
(日本国際賞は、日本版ノーベル賞と言われる)

好きな言葉に米アップル創業者のスティーブ・ジョブズ氏の「Stay hungry, Stay foolish」(貪欲であれ、愚かであれ)がある。

立てた仮設は間違っていたが、信念(磁性の強い鉄が一番いいはず)を元にコツコツとやり続けた。
開発の原動力は悔しさだった。

若い研究者には、会社が認めた公式テーマと自分が情熱を持てる非公式テーマの研究を同時に進行させることをすすめる。テーマは社会の潜在ニーズに基づいて選ぶ。

次の「ニュークリエーション」(従来の常識から離れた場所で研究が始まること)を生み出して欲しい。

<編集後記>
はじめにも書きましたが上記文は日経産業の2016年12月7日から22日までの11連載を要約したものです。
当初簡潔に要約するつもりが、省き難い部分がかなりあり省けず、結局かなりの量の文になってしまいました。
尚原文で詳細に知りたい方で、新聞で読みたい人は図書館に行けば見れると思います。(要確認)
ですが、サイトでもそのまま出ていますのでこちらの方が手軽に見れますね。

最初の頁のみ下記に示しますので頁をめくって見て下さい。
ネオジム磁石執念一路(1)~(5)
ネオジム磁石執念一路(6)

 

投稿者: taiga

化学系会社で研究所、工場、本社で各種素材・製品開発、技術営業に従事後 水処理も経験 先端科学、最新技術が好きな中高年男性。既婚 趣味:テニス、将棋、カラオケ、トレッキング、公園散策、

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

CAPTCHA